Holomorphicity of a class of semigroups of measures operating on $L^{p}(G/H)$
HTML articles powered by AMS MathViewer
- by Tomasz Przebinda
- Proc. Amer. Math. Soc. 87 (1983), 637-643
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687632-0
- PDF | Request permission
Abstract:
In the present paper we consider the class of stable semigroups of measures on a Lie group $G$. This class contains the Gaussian semigroups. We prove that under certain strongly continuous representations of $G$ acting in ${L^p}(G/H)$, $1 \leqslant p < \infty$, these semigroups are holomorphic and uniformly bounded.References
- Michel Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xii, 225–249 (French, with English summary). MR 511825
- A. Hulanicki, A class of convolution semigroups of measures on a Lie group, Probability theory on vector spaces, II (Proc. Second Internat. Conf., Błażejewko, 1979) Lecture Notes in Math., vol. 828, Springer, Berlin, 1980, pp. 82–101. MR 611711 —, private communication.
- G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264–293. MR 79232, DOI 10.1090/S0002-9947-1956-0079232-9 J. Kisynski, Holomorphicity of semi-groups of operators generated by sublaplacians on Lie groups, Lecture Notes in Math., Springer-Verlag, Berlin and New York. T. Przebinda, Spectrum of convolution operators on ${L^p}(G/H)$, preprint.
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938 K. Yosida, Functional analysis, Springer-Verlag, Berlin, Göttingen and Heidelberg, 1965.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 637-643
- MSC: Primary 47D05; Secondary 22E30, 43A10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687632-0
- MathSciNet review: 687632