INSERTING A_p-WEIGHTS

C. J. NEUGEBAUER

Abstract. Necessary and sufficient conditions are given for inserting a single weight $w \in A_p$ between u and v, i.e., $c_1 u \leq w \leq c_2 v$.

1. Let (u, v) be a pair of nonnegative measurable functions on \mathbb{R}^n. We ask under what conditions it is possible to find a function w with $c_1 u \leq w \leq c_2 v$ so that both pairs (u, w), (w, v) are in A_p, or even better w itself is in A_p. We recall that $w \in A_p$ iff $(\int_Q w^q)_{p-1}^{1/p} \leq C \|Q\|_p$, and $(u, v) \in A_p$ iff $(\int_Q u^q)_{p-1}^{1/p} \leq C \|Q\|_p$. These classes were introduced by Muckenhoupt [5] and play an important role in weighted norm inequalities for many operators, as the Hardy-Littlewood maximal operator $Mf(x) = \sup_{r>0} \frac{1}{r^n} \int_{B(x,r)} |f(y)| dy$, the Hilbert transform, and many others.

The single weight problem is easier to handle than the double weight problem, and thus the weighted norm inequalities for (u, v) would follow from those of $w \in A_p$ if $c_1 u \leq w \leq c_2 v$.

2. Throughout $1 < p < \infty$, unless otherwise noted. We need the following lemmas.

Lemma 1. $(u, v) \in A_p$ implies $(v^{1-p}, u^{1-p}) \in A_{p'}$, $1/p + 1/p' = 1$.

Proof. This is simply $(1 - p')(1 - p) = 1$.

Lemma 2. Let $(u, v) \in A_p$ and let $0 < \delta < 1$. If $(q - 1)/(p - 1) = \delta$, then $(u^\delta, v^\delta) \in A_q$.

Proof. Note that $1 < q < p$. Since $(v^{1-p'}, u^{1-p'}) \in A_{p'}$ and $q' > p'$, we have $(v^{1-p}, u^{1-p}) \in A_q$. We use Lemma 1 again and infer that $(u^{1-p'(1-q)}, v^{1-p'(1-q)}) \in A_q$, that is $(u^\delta, v^\delta) \in A_q$.

Corollary. If $(u, v) \in A_p$, $0 < \delta < 1$, then $\|Mf\|_{p, u^\delta} \leq A_\delta \|f\|_{p, v^\delta}$.

Proof. Since $(u^\delta, v^\delta) \in A_q$ and $p > \delta(p - 1) + 1 = q$, we get $u^\delta(Mf > y) \leq c \|f\|_{q, u^\delta}^{1/q} y^q$ [5], and thus $\|Mf\|_{p, u^\delta} \leq A_\delta \|f\|_{p, v^\delta}$ by the Marcinkiewicz interpolation theorem.

3. The following theorem is the key to our problem. Its proof is a two weight adaptation of the Coifman, Jones and Rubio de Francia argument of factoring an A_p-weight [1].

Received by the editors June 15, 1982.

1980 Mathematics Subject Classification. Primary 42B25.

©1983 American Mathematical Society
0002-9939/82/0000-1145/302.00

644
Theorem 1. Assume that

(i) \(\|Mf\|_{p,u} \leq A\|f\|_{p,v} \),

(ii) \(\|Mf\|_{p',e^{1-p}} \leq B\|f\|_{p',e^{1-p}} \).

Then there are functions \(w_j \geq 0 \) such that \(u^{1/p}Mw_j \leq C_j w_j v^{1/p}, j = 1,2, \) and \(u^{1/p}v^{1/p} = w_j w_2^{1-p} \).

Proof. We may assume that \(p \geq 2 \) (if \(1 < p < 2 \) simply interchange below the role of (i) and (ii)). Let \(s = p/p' \), and \(M_s f = M(f^s)^{1/s} \). The operator \(S(f) = u^{1/p}M(fv^{-1/p}) + v^{-1/p}M_s(fu^{1/p}) \) satisfies \(\|S(f)\|_p \leq C\|f\|_p \). We let \(\overline{C} > C \), and for \(u_0 \in L^p, u_0 > 0 \), let \(U = \Sigma \overline{S}(u_0)/\overline{C}^j \). Then \(U \in L^p \) and \(S(U) \leq \overline{C} U \). Hence

\[
M(Uv^{-1/p})u^{1/p} \leq S(U) \leq \overline{C} U \quad \text{and} \quad v^{-1/p}M_s(Uu^{1/p}) \leq \overline{C} U.
\]

Thus, if \(w_2 = Uv^{-1/p} \), we get \(u^{1/p}Mw_2 \leq c_2 w_2 v^{1/p} \), and if we let \(w_1 = U^{1/p} \), we get \(u^{1/p}Mw_1 \leq c_1 w_1 v^{1/p} \), and \(u^{1/p}v^{1/p} = w_1 w_2^{1-p} \).

Theorem 2. Let \((u,v) \in A_p \) and \(0 < \delta < 1 \). Then there exists \(w = w_\delta \in A_p \) such that \(c_1 u^\delta \leq w \leq c_2 v^\delta \).

Proof. Choose \(0 < \varepsilon, \eta < 1 \) such that \(\delta = \varepsilon \eta \). From the corollary we know that \(\|Mf\|_{p,v} \leq A\|f\|_{p,v}, \|Mf\|_{p',e^{1-p}} \leq B\|f\|_{p',e^{1-p}} \). Thus by Theorem 1, \(u^{1/p}v^{1/p} = w_1 w_2^{1-p} \), where \(Mw_j \leq c_j w_j (v/u)^{1/p} \). Note that

\[
v^\varepsilon = w_1 \left(\frac{v}{u} \right)^{1/p} w_2^{1-p} \geq cMw_1 Mw_2^{1-p} \geq cw_1 \cdot w_2^{1-p} \left(\frac{v}{u} \right)^{(1-p)/p} = cu^\varepsilon,
\]

and thus \(c_1 u^\delta \leq (Mw_1)^\varepsilon(Mw_2)^{(1-p)\varepsilon} \leq c_2 v^\delta \). Since \(0 < \eta < 1 \), \((Mw_j)^\eta \in A_1 \), a result due to Coifman. It is easy to see that \(w = (Mw_1)^\eta(Mw_2)^{(1-p)\eta} \in A_p \).

We are now able to give necessary and sufficient conditions for inserting \(A_p \)-weights.

Theorem 3. Let \((u,v) \) be a pair of nonnegative functions. Then there exists \(w \in A_p \) with \(c_1 u \leq w \leq c_2 v \) if and only if there is \(\tau > 1 \) such that \((u^\tau, v^\tau) \in A_p \).

Proof. Since \(w \) and \(w^{1-p} \) obey a reverse Hölder inequality [5], there is \(\tau > 1 \) such that \(w^\tau \in A_p \), and thus \((u^\tau, v^\tau) \in A_p \). Conversely, if \((u^\tau, v^\tau) \in A_p \), then Theorem 2 with \(\delta = 1/\tau \) gives the desired \(w \in A_p \).

4. With the above results and the theorems in [2,6] it is possible to characterize those \(u \) which are bounded above by a \(w \in A_p \), and those \(v \) which are bounded below by a \(w \in A_p \).

Theorem 4. (1) Given \(u \geq 0 \). Then there is a \(w \in A_p \) with \(cu \leq w \) if and only if there is \(\tau > 1 \) such that

\[
\int_{\mathbb{R}^n} \frac{u^\tau(x)}{(1 + |x|^{\tau})} dx < \infty.
\]

(2) Given \(v > 0 \). Then there is \(w \neq 0 \) in \(A_p \) such that \(w \leq cv \) if and only if there is \(\tau > 1 \) such that \(\sup_{r>0} r^{-\tau} \int_{|x|<r} v^\tau(1-p) dx < \infty \).
Proof. We prove \((1) \) and assume first that \(cu \leq w, w \in A_p \). Then there is \(\tau > 1 \) with \(w^\tau \in A_p \) and thus

\[
\int \frac{u^\tau(x)}{(1 + |x|^\eta)^p} \, dx < \infty.
\]

Conversely, if the integral is finite, we have \(v_0 \) so that \((u^\tau, v_0) \in A_p \). If we let \(v = v_0^{1/\tau} \), then \((u^\tau, v^\tau) \in A_p \) and Theorem 3 completes the proof.

The proof of \((2) \) is exactly the same as above using instead \([2]\).

5. It is natural to inquire what one can say about a pair of functions \((u, v) \) for which there is a function \(w \) so that:

\((i) \) \(cu \leq w \leq c_2 v \).

\((ii) (u, w) \in A_p, (w, v) \in A_p \).

We use the methods of the papers \([3, 4]\) to investigate this question.

Let \(f^*(\tau) \) be the nonincreasing rearrangement of \(f : \mathbb{R}^n \to \mathbb{R} \) with respect to the measure \(\sigma \) on \(\mathbb{R}^n \). If for a pair \((u, v) \), \(d\mu = u \, dx, d\nu = v \, dx \), and

\[
\Phi(t) \equiv \Phi_{u,v}(t) = \sup_{Q} \frac{\mu(Q)}{|Q|} \left(\frac{X_{\nu} \psi}{v} \right)_r (\mu(Q)t),
\]

then by Theorem 1 of \([3]\),

\[
(Mf)^*_p(\xi) \leq A \int_0^\infty \Phi(t) f^*_p(t\xi) \, dt.
\]

If \((u, v) \in A_p \), we have shown that \(\Phi \in L(p', s) \) for some \(1 \leq s \leq \infty \), and any such \(s \) can occur \([3, \text{Theorems } 3, 4]\).

Suppose now we have \((i) \) and \((ii) \) above. Let \(\Phi_1 = \Phi_{u,v} \), \(\Phi_2 = \Phi_{v,u} \), and let \(M_2 f = M\{Mf\} \). A twofold application of \((1) \) yields with \(d\lambda = w \, dx \).

\[
(M_2 f)_p^*(\xi) \leq A \int_0^\infty \Phi_1(t)(Mf)_p^*(t\xi) \, dt
\]

\[
\leq A^2 \int_0^\infty \int_0^\infty \Phi_1(t)\Phi_2(\tau)f^*_p(\tau t\xi) \, d\tau dt
\]

\[
= A^2 \int_0^\infty \int_0^\infty \frac{1}{\tau} \Phi_1(t)\Phi_2(\tau)\left(\frac{u}{\tau} \right)_r f^*_p(u\xi) \, d\tau du.
\]

Hence

\[
(M_2 f)_p^* \leq c \int_0^\infty \Psi(u)f^*_p(u\xi) \, du.
\]

where \(\Psi(u) = \int_0^\infty \Phi_1(t)\Phi_2(u/t) \, dt/t \).

The key to our question lies in the study of \(\Psi(u) \) in terms \(\Phi_1, \Phi_2 \). For \(f, g: \mathbb{R}^+ \to \mathbb{R}^+ \), define \(h(u) = \int_0^\infty (1/t)f(t)g(u/t) \, dt \), and write for \(\phi : \mathbb{R}^+ \to \mathbb{R}^+ \).

\[
\|\phi\|_{p,s} = \left(\int_0^\infty \left[t^{1/p} \phi(t) \right]^s \, dt \right)^{1/s}.
\]

If \(\phi \) is the nonincreasing rearrangement of a function \(f \), this is the familiar \(L(p, s) \)-norm of \(f \).
Lemma 3. Let \(1 \leq p < \infty, 1/s + 1/\sigma \geq 1, 1/r = 1/s + 1/\sigma - 1 \). Then \(\| h \|_{p,r} \leq \| f \|_{p,s} \| g \|_{p,\sigma} \).

Proof. We note that \(1/r + 1/\sigma' + 1/s' = 1 \), and we write
\[
(I(t)g(t))g(t) = (t^{s'} \cdot \sigma')^{1/s'} \cdot (t^{\sigma'})^{1/\sigma'} \cdot (t^{s'})^{1/s'}.
\]

By Hölder's inequality with respect to the measure \(dt/t \) we get
\[
\frac{1}{r} \left(\int_0^\infty (t^{s'} \cdot \sigma')^{1/s'} \cdot (t^{\sigma'})^{1/\sigma'} \cdot (t^{s'})^{1/s'} \right)^{1/r} \cdot \left(\int_0^\infty t^{1/r} f(t) \right)^{1/\sigma'} \cdot \left(\int_0^\infty t^{s/r} g(t) \right)^{1/s'}.
\]

The last integral is \(u^{-\sigma'/p} \| g \|_{p,\sigma'}^{1/s'} \), and the middle term is \(\| f \|_{p,s'}^{1/s'} \). Now raise both sides to the \(r \)th power, multiply by \(u^{r/p - 1} \) and integrate with respect to \(u \). We obtain
\[
\| h \|_{p,r}^r \leq \left(\int_0^\infty t^{r^{s'}} \cdot \sigma')^{1/s'} \cdot (t^{\sigma'})^{1/\sigma'} \cdot (t^{s'})^{1/s'} \right)^{1/r} \cdot \left(\int_0^\infty t^{s/r} g(t) \right)^{1/s'} \cdot \| g \|_{p,\sigma'}^{1/s'} \cdot \| f \|_{p,s'}^{1/s'}.
\]

The integral in \(u \), since \(1 - \sigma/s' = \sigma/r \), becomes
\[
\int_0^\infty u^{\sigma/p} g(t) \frac{u}{t} \frac{dt}{u} = t^{\sigma/p} \cdot \| g \|_{p,\sigma},
\]
and hence the first factor is
\[
\int_0^\infty t^{(r-1)/p} \cdot t^{\sigma/p} f(t) \frac{dt}{u} = \| f \|_{p,s}.
\]

If we extract the \(r \)th root we obtain the desired norm inequality.

Remark. This is a "Young's type" convolution inequality applied to the second index in the \(L(p, q) \)-spaces and our proof is a suitable adaptation of the usual proof for convolutions [7, p. 37].

The next lemma is needed for the integrals of the type (1), (2) for the maximal function.

Lemma 4. For \(f, g : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), let \(F(u) = \int_0^\infty f(t)g(tu) \frac{dt}{u} \). If \(1 < p < \infty, 1/s + 1/\sigma \geq 1, 1/r = 1/s + 1/\sigma - 1 \), then
\[
\| F \|_{p,r} \leq \| f \|_{p,s} \| g \|_{p,\sigma}.
\]

Proof. If we let \(t = 1/\tau \), then
\[
F(u) = \int_0^\infty \frac{f(1/\tau)}{\tau} g \left(\frac{u}{\tau} \right) \frac{d\tau}{\tau} = \int_0^\infty f_1(\tau) g \left(\frac{u}{\tau} \right) \frac{d\tau}{\tau}.
\]

Thus by Lemma 1, \(\| F \|_{p,r} \leq \| f_1 \|_{p,s} \| g \|_{p,\sigma} \), and
\[
\| f_1 \|_{p,s}^s = \int_0^\infty \frac{1}{\tau^{1/p-1}} f \left(\frac{1}{\tau} \right) \frac{d\tau}{\tau} = \int_0^\infty \frac{1}{\tau^{1/s-1}} f \left(\frac{1}{\tau} \right) \frac{d\tau}{\tau} = \int_0^\infty t^{s-1} f(t) \frac{dt}{t} = \| f \|_{p,s}^s.
\]
6. We apply now Lemmas 3 and 4 to our original problem of finding a \(w \) between \(u, v \) so that \((u, w) \in A_p, (w, v) \in A_p \).

First we state Lemma 4 in the context of \((Mf)_{n+1}^n(\xi) \leq A f_0^\infty \Phi(t) f^n_\infty(t\xi) \ dt \).

Theorem 5. If \(1/s + 1/\sigma \geq 1, 1/r = 1/s + 1/\sigma - 1 \), then \(\| Mf \|_{p', r, \mu} \leq c\| \Phi \|_{p', s} \| f \|_{p, \sigma, \mu} \).

Theorem 6. Let \((u, v)\) be a pair of functions for which there is a function \(w \) such that
\(\Phi_1 = \Phi_{u,w} \in L(p', s), \Phi_2 = \Phi_{w,v} \in L(p', \sigma), 1/s + 1/\sigma + 1/\rho \geq 2, \) and \(1/\tau = 1/s + 1/\sigma + 1/\rho - 2 \). Then
\[
\| M_2 f \|_{p', \tau, \mu} \leq c\| \Phi_1 \|_{p', s} \| \Phi_2 \|_{p', \sigma} \| f \|_{p, \sigma, \mu}.
\]

Proof. We have seen that
\[
(M_2 f)_{n+1}^n(\xi) \leq c \int_0^\infty \Psi(u) f_\infty^n(u\xi) \ du,
\]
where \(\Psi(u) = \int_0^\infty \Phi_1(t) \Phi_2(u/t) \ dt/t \). If \(1/r = 1/s + 1/\sigma - 1 \), then by Lemma 3,
\[
\| \Psi \|_{p', r} \leq \| \Phi_1 \|_{p', s} \| \Phi_2 \|_{p', \sigma}.
\]
Finally, since \(1/\tau = 1/r + 1/\rho - 1 \), Lemma 4 gives \(\| M_2 f \|_{p', \tau, \mu} \leq c\| \Psi \|_{p', r} \| f \|_{p, \rho, \sigma} \), and the proof is complete.

References

2. Lennart Carleson and Peter W. Jones. Weighted norm inequalities and a theorem of Koosis. preprint.

Mathematical Sciences Division, Purdue University, West Lafayette, Indiana 47907