Inserting $A_{p}$-weights
HTML articles powered by AMS MathViewer
- by C. J. Neugebauer
- Proc. Amer. Math. Soc. 87 (1983), 644-648
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687633-2
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for inserting a single weight $w \in {A_p}$ between $u$ and $\upsilon$, i.e., ${c_1}u \leqslant w \leqslant {c_2}\upsilon$.References
- R. Coifman, Peter W. Jones and José L. Rubio de Francia, Constructive decomposition of BMO functions and factorization of ${A_p}$ weights, Proc. Amer. Math. Soc. 87 (1983), 665-666.
Lennart Carleson and Peter W. Jones, Weighted norm inequalities and a theorem of Koosis, preprint.
- M. A. Leckband and C. J. Neugebauer, A general maximal operator and the $A_{p}$-condition, Trans. Amer. Math. Soc. 275 (1983), no. 2, 821–831. MR 682735, DOI 10.1090/S0002-9947-1983-0682735-3
- M. A. Leckband and C. J. Neugebauer, Weighted iterates and variants of the Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc. 279 (1983), no. 1, 51–61. MR 704601, DOI 10.1090/S0002-9947-1983-0704601-7
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Wo Sang Young, Weighted norm inequalities for the Hardy-Littlewood maximal function, Proc. Amer. Math. Soc. 85 (1982), no. 1, 24–26. MR 647890, DOI 10.1090/S0002-9939-1982-0647890-4
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 644-648
- MSC: Primary 42B25; Secondary 42B20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687633-2
- MathSciNet review: 687633