A technique for characterizing Carleson measures on Bergman spaces
HTML articles powered by AMS MathViewer
- by Daniel Luecking
- Proc. Amer. Math. Soc. 87 (1983), 656-660
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687635-6
- PDF | Request permission
Abstract:
A method is presented for characterizing Carleson-type measures relative to Bergman spaces. This method applies to the standard weighted and unweighted Bergman spaces on the unit ball in ${{\mathbf {C}}^n}$ to yield simple proofs of the known results. It also extends these results to domains more general than balls.References
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375 J. A. Cima and W. R. Wogen, A Carleson measure theorem for the Bergman space on the ball, preprint.
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- William W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237–241. MR 374886, DOI 10.1090/S0002-9939-1975-0374886-9 V. L. Oleinik, Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet Math. 9 (1978), 228-243.
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- David A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. MR 550655
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 656-660
- MSC: Primary 32H10; Secondary 32A30, 46E15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687635-6
- MathSciNet review: 687635