Some properties of Borel subgroups of real numbers
HTML articles powered by AMS MathViewer
- by Barthélemy Le Gac
- Proc. Amer. Math. Soc. 87 (1983), 677-680
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687640-X
- PDF | Request permission
Abstract:
As a consequence of Souslin’s theorem, we obtain the following; if $G$ and $H$ both are analytic subgroups of ${\mathbf {R}}$ such that $G + H = {\mathbf {R}}$ and $G \cap H = \{ 0\}$, then either $G = {\mathbf {R}}$ or $G = \{ 0\}$. Next we obtain some measure and topological properties for uncountable proper Borel subgroups of reals. Finally, we prove that if $E$ is a vector subspacc of ${\mathbf {R}}$ over the rationals which admits an uncountable Borel basis, then there exists no Polish topology on $E$ such that $E$ is a topological group with the given Borel structure generated by the open sets.References
- S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- A. Białynicki-Birula, On subfields of countable codimension, Proc. Amer. Math. Soc. 35 (1972), 354–356. MR 304357, DOI 10.1090/S0002-9939-1972-0304357-4
- N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1045, Hermann, Paris, 1958 (French). Deuxième édition revue et augmentée. MR 0173226
- Paul Erdős, Some remarks on subgroups of real numbers, Colloq. Math. 42 (1979), 119–120. MR 567551, DOI 10.4064/cm-42-1-119-120
- P. Erdős, K. Kunen, and R. Daniel Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), no. 3, 187–199. MR 641304, DOI 10.4064/fm-113-3-187-199
- A. Guichardet, Analyse harmonique commutative, Monographies Universitaires de Mathématiques, No. 26, Dunod, Paris, 1968 (French). MR 0240554
- Robert R. Kallman, Certain quotient spaces are countably separated. III, J. Functional Analysis 22 (1976), no. 3, 225–241. MR 0417329, DOI 10.1016/0022-1236(76)90010-0 N. Lusin, Les ensembles analytiques, 2nd ed., Chelsea, New York, 1972.
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- R. Daniel Mauldin, On the Borel subspaces of algebraic structures, Indiana Univ. Math. J. 29 (1980), no. 2, 261–265. MR 563210, DOI 10.1512/iumj.1980.29.29017
- Jan Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165–169. MR 224762, DOI 10.4064/fm-61-2-165-169
- J. v. Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), no. 1, 134–141 (German). MR 1512442, DOI 10.1007/BF01459089 W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 104-111.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 677-680
- MSC: Primary 28C10; Secondary 04A15, 22A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687640-X
- MathSciNet review: 687640