Fourier coefficients of continuous functions on compact groups
HTML articles powered by AMS MathViewer
- by Barbara Heiman
- Proc. Amer. Math. Soc. 87 (1983), 685-690
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687642-3
- PDF | Request permission
Abstract:
Let $G$ be an infinite compact group with dual object $\Sigma$. Letting ${\mathcal {K}_\sigma }$ be the representation space for $\sigma \in \Sigma$, ${\mathcal {E}^2}(\Sigma )$ is the set $\{ A = ({A^\sigma }) \in \Pi \mathcal {B}({\mathcal {K}_\sigma }):\left \| A \right \|_2^2 = {\sum _\sigma }{d_\sigma }\operatorname {Tr} ({A^\sigma }{A^{\sigma *}}) < \infty \}$. For $A \in {\mathcal {E}^2}(\Sigma )$, we show that there is a function $f$ in $C(G)$ such that ${\left \| f \right \|_\infty } \leqslant C{\left \| A \right \|_2}$ and $\operatorname {Tr} (\hat f(\sigma )\hat f{(\sigma )^*}) \geqslant \operatorname {Tr} ({A^\sigma }{A^{\sigma *}})$ for every $\sigma \in \Sigma$.References
- Torsten Carleman, Über die Fourierkoeffizienten einer stetigen Funktion, Acta Math. 41 (1916), no. 1, 377–384 (German). Aus einem Brief an Herrn A. Wiman. MR 1555157, DOI 10.1007/BF02422951
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Karel de Leeuw, Yitzhak Katznelson, and Jean-Pierre Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1001–A1003 (French, with English summary). MR 510870
- Daniel Rider, Random Fourier series, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 93–106. MR 0487229
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 685-690
- MSC: Primary 43A77
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687642-3
- MathSciNet review: 687642