ANOTHER INTERESTING PROPERTY CONCERNING THE PROBABILITY MEASURES ON THE RATIONALS

K. W. LANE

Abstract. Let X be a perfect, complete, separable metric space and $P(X)$ denote the space of Borel probability measures on X equipped with the topology of weak convergence. If Y is a countable dense subset of X then $P(Y)$ is not a G_{δ_0} subset of $P(X)$. Furthermore if X is separable, complete and metric, and $Y \subseteq X$, and $P(Y)$ is a G_{δ_0} subset of $P(X)$, then $P(Y)$ is in fact a G_{δ} subset of $P(X)$.

I. Introduction. Let X be a separable metric space and $P(X)$ denote the space of Borel probability measures on X. The topology on $P(X)$ is the topology of weak convergence, i.e. $\lim m_1 = m$ iff $\limsup m_1(F) \leq m(F)$ for all closed $F \subseteq X$. Equivalent versions of the topology and other properties of $P(X)$ can be found in [4, pp. 39–50].

In [5] Preiss showed that if Y is taken to be the rationals (or more generally is first category in itself) then Y is not Prohorov. Preiss then used this result to show that if Y is any separable metric coanalytic space, then Y is Prohorov implies that Y is topologically complete (which is equivalent to $P(Y)$ being topologically complete).

In this paper it is shown that if Y is a countable dense subset of a perfect Polish space X, then $P(Y)$ is not a G_{δ_0} subset of $P(X)$. Then, using Theorem 2 of [5], it is shown that if $Y \subseteq X$ (Polish) and $P(Y)$ is a G_{δ_0} subset of $P(X)$, then $P(Y)$ is in fact a G_{δ} subset of $P(X)$.

This result is of the same flavor as that of Luther in [3] in which he showed that local compactness of $P(Y)$ (actually the existence of a compact neighborhood) implies that $P(Y)$ is compact. It is not difficult using Luther's result to show if $P(Y)$ is σ-compact then $P(Y)$ is compact.

These three results can be summarized as follows: if Y is separable and metric then:

(1) if Y is $\mathcal{C}4$ and Prohorov then $P(Y)$ is absolute G_{δ},
(2) if $P(Y)$ is absolute G_{δ_0} then $P(Y)$ is absolute G_{δ},
(3) if $P(Y)$ is absolute F_σ then $P(Y)$ is absolute closed.

The necessary facts concerning absolute Borel class can be found in [2, p. 339].

II. Background. Two background theorems require explicit mention. The first is due to Prohorov and may be found in [4, p. 46, Theorem 6.5].

Received by the editors, November 20, 1981 and, in revised form, July 21, 1982.

1980 Mathematics Subject Classification. Primary 60B05, 60B10, 54F65, 54H05.

1The results contained in this paper were obtained by the author while he was a student of Jack B. Brown at Auburn University.
Theorem A (Prohorov). If X is separable and metric, then P(X) is topologically complete iff X is.

The second may be found in [6, p. 430].

Theorem B. If X is complete, then F ⊆ X is topologically complete iff F is a $G_δ$ subset of X.

In [7] Varadarajan notes that a basis for the topology of weak convergence is formed by finite intersections of $\{m \in P(X): m(U) > m_0(U) - \varepsilon, i = 1, n\}$ where m_0 is some fixed probability measure, U is open in X and $\varepsilon > 0$. For our purposes we need to show that sets of a more restrictive form constitute a basis for $P(X)$.

Lemma 1. Sets of the form $N^*(m_0; \varepsilon; U_1, \ldots, U_n) = \{m \in P(X): m(U_i) > m_0(U_i) - \varepsilon, i = 1, n\}$ where $\varepsilon > 0$ and U_1, \ldots, U_n are disjoint open subsets of X such that $\Sigma_{i=1}^n m_0(U_i) = 1$, form a basis for the weak topology on $P(X)$.

Proof. The usual basis for the weak topology on $P(X)$ is defined by sets of the form $N(m_0; \varepsilon; f_1, \ldots, f_n) = \{m \in P(X): |\int f_i dm - \int f_i dm_0| < \varepsilon, j = 1, \ldots, n\}$ where the functions f_j are required to be bounded continuous functions from X into the reals (see [4]). For convenience assume that the f_j are into $[0, 1]$.

As $N(m_0; \varepsilon; f_1, \ldots, f_n) = \bigcap_{i=1}^n N(m_0; \varepsilon; f_i)$, we need only consider $N(m_0; \varepsilon; f_i)$ and show that intersections may be accommodated.

Consider $N(m_0; \varepsilon; f)$ where f is taken to be from X into $[0, 1]$. Pick an integer $n > 2$ so that $(1/n) < (\varepsilon/8)$. Pick numbers $0 < a_0 < a_1 < \cdots < a_{n+1} = 1$ so that the mesh of the subdivision is less than $(1/n)$ and $m_0(\{f \in \{a_0, \ldots, a_n\}\}) = 0$. Note that the last property can be obtained since $n + 1$ points are chosen and only countably many points are the image under f of sets of positive m_0-measure.

Let $U_0 = \{f \in [0, a_0]\}$, $U_i = \{f \in (a_{i-1}, a_i]\}$ for $1 \leq i \leq n$ and $U_{n+1} = \{f \in (a_n, 1]\}$. Note $\Sigma_{i=1}^{n+1} m_0(U_i) = 1$. Pick $0 < \delta < 1$ so that $\delta(n + 1) < (\varepsilon/8)$.

Consider $m \in N^*(m_0; (\delta/2^{n+1}); U_0, \ldots, U_{n+1})$. If $m(U_{n+1}) \geq m_0(U_{n+1}) + \delta$ then

$$\sum_{i=0}^{n+1} m(U_i) \geq \sum_{i=0}^{n+1} = m_0(U_i) - \delta/2^{n+1} + m_0(U_{n+1}) + \delta$$

$$= 1 - [(n + 1)/2^{n+1}] \delta + \delta > 1.$$

Clearly this holds for each U_i so $|m(U_i) - m_0(U_i)| < \delta$ for $0 \leq i \leq n + 1$. This gives the inequalities

$$\sum_{i=1}^{n+1} m_0(U_i) a_i \leq \int f dm_0 \leq \sum_{i=0}^{n+1} m_0(U_i) a_i$$

and

$$\sum_{i=1}^{n+1} [m_0(U_i) - \delta] a_i \leq \int f dm \leq \sum_{i=0}^{n+1} [m_0(U_i) + \delta] a_i.$$
Therefore
\[[m_0(U_0) + \delta](-a_0) - \sum_{i=1}^{n+1} [m_0(U_i)(a_i - a_{i-1}) + \delta a_i] \leq \int \! f \, dm_0 - \int \! f \, dm \]
\[\leq m_0(U_0)a_0 + \sum_{i=1}^{n+1} [m_0(U_i)(a_i - a_{i-1}) + \delta a_{i-1}]. \]

Now \(a_0 < (\varepsilon/8) \) implies \(m(U_0)a_0 < (\varepsilon/8) \) and \(\delta a_0 < (\varepsilon/8) \). Furthermore,
\[\sum_{i=1}^{n+1} m_0(U_i)(a_i - a_{i-1}) \leq \frac{1}{n} \sum_{i=1}^{n+1} m(U_i) \leq \frac{1}{n} \leq \frac{\varepsilon}{8}. \]

and
\[\sum_{i=1}^{n+1} \delta a_{i-1} < \sum_{i=1}^{n+1} \delta a_i = \delta \sum_{i=1}^{n+1} a_i < \delta(n + 1) < \frac{\varepsilon}{8}. \]

So \(|\int \! f \, dm_0 - \int \! f \, dm| < \varepsilon \).

In order to accommodate
\[N(m_0; \varepsilon; U) \cap N(m_0; \varepsilon; f_j) \]
consider \(N^*(m_0; \delta_1; U_1, \ldots, U_n) \) and \(N^*(m_0; \delta_2; O_1, \ldots, O_k) \). Let \(U_{ij} = U_i \cap O_j \) and \(\delta = (\min\{\delta_1, \delta_2\}/\max\{k, n\}) \). Note that for \(m \in P(X) \), \(m(U_i) \geq \sum_{j=1}^{k} m(U_{ij}) \) and \(m(U_j) \geq \sum_{i=1}^{n} m(U_{ij}) \) and for \(m_0 \) these are equalities.

Suppose \(m \in N^*(m_0; \delta; U_1, \ldots, U_n) \). So \(m(U_{ij}) > m_0(U_{ij}) - \delta \) implies
\[m(U_i) \geq \sum_{j=1}^{k} m(U_{ij}) > \sum_{j=1}^{k} [m_0(U_{ij}) - \delta] \]
\[= m_0(U_i) - k\delta > m_0(U_i) - \delta_1. \]

Similarly \(m(O_j) > m_0(O_j) - \delta_2 \), so \(m \) belongs to the intersection of \(N^*(m_0; \delta_1; U_1, \ldots, U_n) \) and \(N^*(m_0; \delta_2; O_1, \ldots, O_k) \).

\(N^*(m_0; \varepsilon; U_1, \ldots, U_n) \) is open since it is equal to
\[\bigcap_{i=1}^{n} \{m \in P(X): m(U_i) > m_0(U_i) - \varepsilon\} \]
and these sets are open. \(\square \)

The following lemma follows directly from the Baire Category Theorem. It is stated as a lemma in the form that will be used in the example to follow.

Lemma 2. Suppose \(X \) is topologically complete, \(V \) is a closed subset of \(X \), \(O \subseteq V \) open relative to \(V \), \(N \subseteq V \) that is first category in \(V \) and \(\langle K_i \rangle \) is a sequence of closed sets in \(X \) such that \(O - N \subseteq \bigcup_{i=1}^{\infty} K_i \). There exists a set \(U \subseteq O \) with the following properties:

(i) \(U \) is open relative to \(O \),
(ii) \(\overline{U} \subseteq O \) (\(\overline{U} \) denoting the closure of \(U \) in \(X \)),
(iii) \(\overline{U} \subseteq K_j \) for some \(j \),
(iv) the diameter of \(\overline{U} < (1/2^i) \) where \(i \) is an arbitrary natural number.
III. Main result. We now introduce the following notation. Let \(X \) be a perfect, complete, separable metric space and \(Y \) a countable dense subset of \(X \). Let \(Y = \{y_1, y_2, \ldots \} \) and \(Y_i = \{y_1, y_2, \ldots, y_i\} \). Let \(i_1, i_2, i_3, \ldots, i_n \) denote an increasing sequence of positive integers, \(C_{ij} = \{m \in P(X) \mid m(y_j) \geq 1 - (1/j)\} \), \(V_n = \bigcap_{i=1}^n C_{i,k} \) and \(C_j = \bigcup_{i=j}^\infty C_{ij} \). Note that \(C_{ij} \) is closed in \(P(X) \) and \(\bigcap_{j=1}^\infty C_j = P(Y) \). Assume that \(P(X) \) has been equipped with a complete metric.

Lemma 3. \(V_n \cap C_{i,n+1} \) is nowhere dense in \(V_n \).

Proof. \(V_n \cap C_{i,n+1} \) is closed in \(V_n \) so it remains to show that if \(m_0 \in V_n \cap C_{i,n+1} \) then any neighborhood of \(m_0 \) contains a point of \(V_n - C_{i,n+1} \).

Consider \(N^*(m_0; \varepsilon; U_1, \ldots, U_k) \). Since \(X \) is perfect and complete and \(Y \) is countable we may choose \(a_i \in U_j - Y \) for \(1 \leq j \leq k \).

Case 1. \(m_0(Y,) < 1 - 1/(n + 1) \). Define \(m \in P(X) \) by the following: \(m(y_j) = m_0(y_j) \) for \(y_j \in Y, \) and \(m(a_j) = m_0(U_j) - m(U_j \cap Y,) \) for \(1 \leq j \leq k \). Clearly \(m(U_j) = m_0(U_j) \) and \(m \) agrees with \(m_0 \) on \(Y, \) but \(m(Y,) < 1 - 1/(n + 1) \). So \(m \in N^*(m_0; \varepsilon; U_1, \ldots, U_k) \cap [V_n - C_{i,n+1}] \).

Case 2. \(m_0(Y,) \geq 1 - (1/n + 1) \). Let \(t \) denote the first integer between \(1 \) and \(i_n \) inclusive with the property that \(\sum_{j=1}^t m_0(y_j) \geq 1 - 1/(n + 1) \). Pick \(0 < \varepsilon < 1 \) so that

\[
1 - \frac{1}{n + 1} < \sum_{j=1}^t m_0(y_j) + \varepsilon m_0(y_t) < 1 - \frac{1}{n + 1}.
\]

Define \(m \) by the following: \(m(y_j) = m_0(y_j) \) for \(j < t \), \(m(y_t) = \varepsilon m_0(y_t) \) and \(m(a_j) = m_0(U_j) - m(U_j \cap Y_t) \) for \(1 \leq j \leq k \). Now, \(m(U_j) = m_0(U_j) \) and \(m \) agrees with \(m_0 \) on \(Y_t \). Since \(m_0 \in V_n \), \(m(Y,) \geq 1 - (1/j) \) for \(i_j < t \). If \(t \leq i_j \leq i_n \) then \(m(Y,) \geq 1 - 1/(n + 1) \). Hence, \(m \in V_n \). On the other hand, \(m(Y,) < 1 - 1/(n + 1) \) implies that \(m \not\in C_{i,n+1} \). This completes the proof. \(\Box \)

Lemma 4. \(V_n \cap C_{i,n+1} \) is dense in \(V_n \).

Proof. Let \(m_0 \in V_n \) and consider \(N^*(m_0; \varepsilon; U_1, U_2, \ldots, U_k) \). Since \(Y \) is dense and \(X \) is perfect, \((Y, - Y,) \cap U_j \neq 0 \). Pick \(i > i_n \) with the property that \((Y, - Y,) \cap U_j \neq 0 \). Pick \(a_j \in (Y, - Y,) \cap U_j \). Define \(m \) by the following: \(m(y_j) = m_0(y_j) \) for \(1 \leq j \leq i_n \) and \(m(a_j) = m_0(U_j) - m(U_j \cap Y,) \). Clearly \(m(Y,) = 0 \), so \(m \in C_{i,n+1} \). Furthermore \(m \) agrees with \(m_0 \) on \(Y_n \) implies \(m \in V_n \) and \(m(U_j) = m_0(U_j) \) implies \(m \in N^*(m_0; \varepsilon; U_1, \ldots, U_k) \). \(\Box \)

Example 5. In this example the notation introduced before Lemma 3 will be used. It will be shown that \(P(Y) \) is not a \(G_{\delta} \) subset of \(P(X) \). Assume that \(P(X) \) has been equipped with complete metric.

Suppose \(P(Y) \) is a \(G_{\delta} \) subset of \(P(X) \). Then \(P(X) - P(Y) \) is an \(F_{\delta} \) subset of \(P(X) \) and there exist closed sets \(\langle K_{ij} \rangle \) such that \(P(Y)^c = \bigcap_{j=1}^\infty K_j \), where \(K_j = \bigcup_{i=j}^\infty K_{ij} \).

Using Lemmas 2, 3 and 4 a sequence of sets, \(\langle \tilde{O}_n \rangle \), will be constructed that have the property that their intersection belongs to both \(P(Y) \) and \(P(Y)^c \). Recall the notation introduced before Lemma 3.
Let $i_1 = 1$. Then $V_1 = C_{l_1}$ is a closed subset of $P(X)$. By Lemma 3 we have that $V_1 \cap C_2$ is a first category F_σ set with respect to V_1. Let $O_1 = P(X)$. Now $O_1 - (V_1 \cap C_2) \subseteq C_2 \subseteq P(Y)^c \subseteq K_1$ (note $O_1 \subseteq V_1$ and in general O_n will be a subset of V_n). By Lemma 2 there exists a set $U_1 \subseteq O_1$ having properties (i)-(iv) as stated in the lemma. For property (iv) require that the diameter of $\overline{U}_1 < \frac{1}{2}$. Note that K_1 corresponds to the union of the K_n of Lemma 2.

Since U_1 is open in O_1 and, by Lemma 4, C_2 is dense in V_1, we can pick $i_2 > i_1$ so that $C_{i_2} \cap U_1$. Let $V_2 = V_1 \cap C_{i_2}$ and $O_2 = U_1 \cap V_2$. Note that O_2 is open in V_2 and V_2 is a closed subset of $P(X)$ which is complete. Proceed to the $n + 1$ step.

Assume that $i_1 < \cdots < i_n$ have been defined, $V_n = \bigcap_{k=1}^n C_{i_k}$, $O_n \supseteq O_2 \cdots O_n$ have been defined so that the diameter of $O_k < (1/2^{k-1})$ and $O_k \subseteq V_k$ is open relative to V_k. By Lemmas 3 and 4, $V_n \cap C_{n+1}$ is a first category F_σ subset of V_n and is dense in V_n. $O_n - (V_n \cap C_{n+1}) \subseteq C_{n+1} \subseteq P(Y)^c \subseteq K_n$, so by Lemma 2 there exists $U_n \subseteq O_n$ having properties (i)-(iv) (where the diameter of $\overline{U}_n < (1/2^n)$). Pick $i_{n+1} > i_n$ so that $C_{i_{n+1}} \cap U_n$. Let $V_{n+1} = V_n \cap C_{i_n}, n + 1$ and $O_{n+1} = U_n \cap V_{n+1}$.

The sets $O_1 \supseteq O_2 \supseteq \cdots$, are nonempty and the diameter of $\overline{O}_n < (1/2^{n-1})$ for $n > 1$. Since $P(X)$ is complete there exists $m \in \bigcap_{n=1}^\infty O_n$. For each n, $O_n \subseteq V_n$ and V_n is closed so $\overline{O}_n \subseteq V_n$ and $m \in V_n$. Therefore, for each $n, m \in C_{i_n}$, so $m \in C_n$ and $m \in \bigcap_{n=1}^\infty C_n = P(Y)$.

On the other hand $\overline{O}_n \subseteq \overline{U}_{n-1}$ for $n \geq 2$. By property (iii) of Lemma 2, $\overline{U}_{n-1} \subseteq K_{n-1}$, which gives that $m \in K_n$ for each n and $m \in \bigcap_{n=1}^\infty K_n = P(Y)^c$. \hfill \square

Theorem 6. If X is separable metric and coanalytic but not topologically complete, then X contains a countable, dense in itself, G_δ subspace.

Proof. See [1 or 5].

Theorem 7. If X is a complete separable metric space and $Y \subseteq X$ and $P(Y)$ is a $G_{\delta\sigma}$ subset of $P(X)$ then $P(Y)$ is in fact a G_δ subset of $P(X)$.

Proof. Suppose Y fails to be a G_δ subset of X (and hence, by Theorem B, Y is not topologically complete). Y and X are homeomorphic to the degenerate measures (point masses) in $P(Y)$ and $P(X)$, see [4], so Y is a $G_{\delta\sigma}$ subset of X. Since X is complete, Y is coanalytic. By Theorem 6 there exists a G_δ subset of X, call it G, such that $G \cap Y$ is countable and dense in itself. Let $Y_1 = G \cap Y$ and $X_1 = \overline{Y}_1 \cap G$, i.e. X_1 is the closure of Y_1 in G. X_1 is dense in itself and topologically complete. Y_1 is a countable dense subset of X_1.

Since $Y_1 = Y \cap X_1$ we have that $P(Y_1) = P(Y) \cap P(X_1)$. By hypothesis $P(Y)$ is a $G_{\delta\sigma}$ in $P(X)$, so $P(Y_1)$ is a $G_{\delta\sigma}$ in $P(X_1)$. On the other hand, X_1 and Y_1 have the properties specified in Example 5 in which it was shown that $P(Y_1)$ is not a $G_{\delta\sigma}$ in $P(X_1)$; hence, Y must be a G_δ subset of X and therefore, by Theorems A and B, $P(Y)$ is a G_δ subset of $P(X)$. \hfill \square

Remark. It is not difficult to show that if Y belongs to the αth multiplicative Borel class with respect to X, then $P(Y)$ belongs to the αth multiplicative Borel class with respect to $P(X)$. In light of statements (2) and (3) of §1, is the following true?
If $P(Y)$ belongs to the βth, $\beta > 0$, additive Borel class with respect to $P(X)$, then there exists $\alpha < \beta$ such that $P(Y)$ belongs to the αth multiplicative Borel class with respect to $P(Y)$.

References

TRW Systems 526/610, P. O. Box 1310, San Bernardino, California 92402