Another interesting property concerning the probability measures on the rationals
HTML articles powered by AMS MathViewer
- by K. W. Lane
- Proc. Amer. Math. Soc. 87 (1983), 717-722
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687649-6
- PDF | Request permission
Abstract:
Let $X$ be a perfect, complete, separable metric space and $P(X)$ denote the space of Borel probability measures on $X$ equipped with the topology of weak convergence. If $Y$ is a countable dense subset of $X$ then $P(Y)$ is not a ${G_{\delta \sigma }}$ subset of $P(X)$. Furthermore if $X$ is separable, complete and metric, and $Y \subseteq X$, and $P(Y)$ is a ${G_{\delta \sigma }}$ subset of $P(X)$, then $P(Y)$ is in fact a ${G_\delta }$ subset of $P(X)$.References
- W. Hurewicz, Relativ perfekte Teile von punktenmengen und mengen, Fund. Math. 12 (1928), 78-109.
C. Kuratowski, Topologie. I, 4th ed., Monografie Mat., Warsaw, 1958.
- Norman Y. Luther, Locally compact spaces of measures, Proc. Amer. Math. Soc. 25 (1970), 541–547. MR 280668, DOI 10.1090/S0002-9939-1970-0280668-4
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- David Preiss, Metric spaces in which Prohorov’s theorem is not valid, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 109–116. MR 360979, DOI 10.1007/BF00536621
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 717-722
- MSC: Primary 60B05; Secondary 28C15, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687649-6
- MathSciNet review: 687649