The chain recurrent set for maps of the interval
HTML articles powered by AMS MathViewer
- by Louis Block and John E. Franke
- Proc. Amer. Math. Soc. 87 (1983), 723-727
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687650-2
- PDF | Request permission
Abstract:
Let $f$ be a continuous map of a compact interval into itself. We show that if the set of periodic points of $f$ is a closed set then every chain recurrent point is periodic.References
- Louis Block, Mappings of the interval with finitely many periodic points have zero entropy, Proc. Amer. Math. Soc. 67 (1977), no. 2, 357–360. MR 467841, DOI 10.1090/S0002-9939-1977-0467841-3
- Louis Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), no. 3, 576–580. MR 509258, DOI 10.1090/S0002-9939-1978-0509258-X C. Conley, The gradient structure of a flow. I, IBM Research, RC 3932 (#17806), Yorktown Heights, N. Y., July 17, 1972. —, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1976.
- Ethan M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. Amer. Math. Soc. 79 (1980), no. 1, 127–133. MR 560598, DOI 10.1090/S0002-9939-1980-0560598-7
- Ethan M. Coven and Zbigniew Nitecki, Nonwandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 9–31. MR 627784, DOI 10.1017/s0143385700001139
- Tien Yien Li, MichałMisiurewicz, Giulio Pianigiani, and James A. Yorke, Odd chaos, Phys. Lett. A 87 (1981/82), no. 6, 271–273. MR 643455, DOI 10.1016/0375-9601(82)90692-2
- Zbigniew Nitecki, Maps of the interval with closed periodic set, Proc. Amer. Math. Soc. 85 (1982), no. 3, 451–456. MR 656122, DOI 10.1090/S0002-9939-1982-0656122-2
- Zbigniew Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR 670074
- Jin Cheng Xiong, Continuous self-maps of the closed interval whose periodic points form a closed set, J. China Univ. Sci. Tech. 11 (1981), no. 4, 14–23 (English, with Chinese summary). MR 701781
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 723-727
- MSC: Primary 58F22; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687650-2
- MathSciNet review: 687650