Pseudo-arcs and connectedness in homeomorphism groups
HTML articles powered by AMS MathViewer
- by Wayne Lewis
- Proc. Amer. Math. Soc. 87 (1983), 745-748
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687655-1
- PDF | Request permission
Abstract:
We prove that the homeomorphism group of the pseudo-arc contains no nondegenerate continua. An equivalent result holds for any continuum all of whose small subcontinua are pseudo-arcs, e.g. for the pseudo-circle and the circle of pseudo-arcs. Related questions are briefly mentioned.References
- R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729–742. MR 27144 Beverly Brechner, Homeomorphism groups of chainable and homogeneous continua, Proc. Texas Topology Summer 1980, Austin (to appear).
- Beverly L. Brechner, On the dimensions of certain spaces of homeomorphisms, Trans. Amer. Math. Soc. 121 (1966), 516–548. MR 187208, DOI 10.1090/S0002-9947-1966-0187208-2
- Paul F. Duvall, Peter Fletcher, and Robert A. McCoy, Isotopy Galois spaces, Pacific J. Math. 45 (1973), 435–442. MR 321054
- P. Fletcher and R. L. Snider, Topological Galois spaces, Fund. Math. 68 (1970), 143–148. MR 266181, DOI 10.4064/fm-68-2-143-148
- K. Kuperberg, W. Kuperberg, and W. R. R. Transue, On the $2$-homogeneity of Cartesian products, Fund. Math. 110 (1980), no. 2, 131–134. MR 600586, DOI 10.4064/fm-110-2-131-134
- Wayne Lewis, Homeomorphism groups and homogeneous continua, Topology Proc. 6 (1981), no. 2, 335–344 (1982). MR 672465
- Edwin E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581–594. MR 25733, DOI 10.1090/S0002-9947-1948-0025733-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 745-748
- MSC: Primary 54F20; Secondary 54F50, 54H15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0687655-1
- MathSciNet review: 687655