Pseudocomplete nilpotent groups
HTML articles powered by AMS MathViewer
- by Thomas A. Fournelle
- Proc. Amer. Math. Soc. 88 (1983), 1-7
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691267-3
- PDF | Request permission
Abstract:
Semicomplete nilpotent groups, that is, nilpotent groups with no outer automorphisms, have been of interest for many years. In this paper pseudocomplete nilpotent groups, that is, nilpotent groups in which the automorphism group and the inner automorphism group are isomorphic (not equal), are constructed. When suitable conditions are placed on the pseudocomplete nilpotent group, the quotient of the automorphism group by the inner automorphism group is completely characterized.References
- T. A. Fournelle, Torsion in semicomplete nilpotent groups (to appear).
L. Fuchs, Infinite Abelian groups, Academic Press, New York and London, 1970, 1973.
- Wolfgang Gaschütz, Nichtabelsche $p$-Gruppen besitzen äussere $p$-Automorphismen, J. Algebra 4 (1966), 1–2 (German). MR 193144, DOI 10.1016/0021-8693(66)90045-7
- Hermann Heineken, Automorphism groups of torsionfree nilpotent groups of class two, Symposia Mathematica, Vol. XVII, Academic Press, London, 1976, pp. 235–250. (Convegno sui Gruppi Infiniti, INDAM, Roma, 1973),. MR 0419627
- Rimhak Ree, The existence of outer automorphisms of some groups, Proc. Amer. Math. Soc. 7 (1956), 962–964. MR 82987, DOI 10.1090/S0002-9939-1956-0082987-6 D. J. S. Robinson, Outer automorphisms of torsion-free nilpotent groups, unpublished.
- Urs Stammbach, Homology in group theory, Lecture Notes in Mathematics, Vol. 359, Springer-Verlag, Berlin-New York, 1973. MR 0382477
- Robert B. Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin-New York, 1976. MR 0409661
- A. E. Zalesskiĭ, A nilpotent $p$-group possesses an outer automorphism, Dokl. Akad. Nauk SSSR 196 (1971), 751–754 (Russian). MR 0274587
- A. E. Zalesskiĭ, An example of a nilpotent group without torsion that has no outer automorphisms, Mat. Zametki 11 (1972), 21–26 (Russian). MR 291291
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 1-7
- MSC: Primary 20F18; Secondary 20F28
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691267-3
- MathSciNet review: 691267