Maximal separable subfields of bounded codegree
HTML articles powered by AMS MathViewer
- by James K. Deveney and John N. Mordeson
- Proc. Amer. Math. Soc. 88 (1983), 16-20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691270-3
- PDF | Request permission
Abstract:
Let $L$ be a function field in $n > 0$ variables over a field $K$ of characteristic $p \ne 0$. An intermediate field $S$ is maximal separable if $S$ is separable over $K$ and every subfield of $L$ which properly contains $S$ is inseparable over $K$. This paper examines when $[L:S]|S$ is maximal separable is bounded. The main result states that this set is bounded if and only if there is an integer $c$ such that any intermediate field ${L_1}$ over which $L$ is purely inseparable and $[L:{L_1}] > {p^c}$ must be separable over $K$. Examples are also given where the above bound is ${p^{n + 1}}$ for any $n \geqslant 1$.References
- James K. Deveney and John N. Mordeson, The order of inseparability of fields, Canadian J. Math. 31 (1979), no. 3, 655–662. MR 536370, DOI 10.4153/CJM-1979-065-3
- James K. Deveney and John N. Mordeson, Distinguished subfields, Trans. Amer. Math. Soc. 260 (1980), no. 1, 185–193. MR 570785, DOI 10.1090/S0002-9947-1980-0570785-4
- James K. Deveney and John N. Mordeson, Distinguished subfields of intermediate fields, Canadian J. Math. 33 (1981), no. 5, 1085–1096. MR 638368, DOI 10.4153/CJM-1981-083-2
- James K. Deveney and John N. Mordeson, Calculating invariants of inseparable field extensions, Proc. Amer. Math. Soc. 81 (1981), no. 3, 373–376. MR 597643, DOI 10.1090/S0002-9939-1981-0597643-X
- James K. Deveney and John N. Mordeson, Splitting and modularly perfect fields, Pacific J. Math. 83 (1979), no. 1, 45–54. MR 555038
- Nicholas Heerema, $p$th powers of distinguished subfields, Proc. Amer. Math. Soc. 55 (1976), no. 2, 287–292. MR 392949, DOI 10.1090/S0002-9939-1976-0392949-X
- Nickolas Heerema, Maximal separable intermediate fields of large codegree, Proc. Amer. Math. Soc. 82 (1981), no. 3, 351–354. MR 612717, DOI 10.1090/S0002-9939-1981-0612717-2
- Hanspeter Kraft, Inseparable Körpererweiterungen, Comment. Math. Helv. 45 (1970), 110–118 (German). MR 260709, DOI 10.1007/BF02567318
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 16-20
- MSC: Primary 12F15; Secondary 12F20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691270-3
- MathSciNet review: 691270