MAXIMAL SEPARABLE SUBFIELDS OF BOUNDED CODEGREE

JAMES K. DEVENEY AND JOHN N. MORDESON

Abstract. Let L be a function field in $n > 0$ variables over a field K of characteristic $p \neq 0$. An intermediate field S is maximal separable if S is separable over K and every subfield of L which properly contains S is inseparable over K. This paper examines when $\{ [L : S] | S $ is maximal separable $\}$ is bounded. The main result states that this set is bounded if and only if there is an integer c such that any intermediate field L_1 over which L is purely inseparable and $[L : L_1] > p^c$ must be separable over K. Examples are also given where the above bound is p^{n+1} for any $n > 1$.

Let L be a function field in $n (n > 0)$ variables over a field K of characteristic $p \neq 0$. An intermediate field S is maximal separable if S is separable over K and every subfield of L which properly contains S is inseparable over K. It is clear that L is purely inseparable and finite dimensional over any maximal separable S. This paper is concerned with $\{ [L : S] | S $ is maximal separable $\}$. Such an S is distinguished if $L \subseteq K^{n+}(S)$, that is, L is contained in a field obtained from S by adjoining only roots of elements of K. Every L/K has distinguished subfields and moreover, S' is distinguished if and only if $[L : S'] = \min \{ [L : S] | S $ is maximal separable $\}$ [8]. If this minimum is p^r, then r is called the order of inseparability of L/K, denoted $\text{inor}(L/K)$. [2] examined the question of when every maximal separable subfield of L/K is distinguished, i.e., $\{ [L : S] | S $ is maximal separable $\} = \{ p^r \}$. Recently Heerema, [7], examined the question of when $\{ [L : S] | S $ is maximal separable $\}$ is bounded. He showed, for the case where L is of transcendence degree 1 over K, that this set is bounded if and only if the algebraic closure of K in L is separable over K. This paper continues the investigations begun in [7].

If $\{ [L : S] | S $ is maximal separable $\}$ is bounded, then any intermediate field L_1, over which L is not algebraic, must be separable over K (Corollary 6). In some special cases, the converse of this result is also true, and we conjecture it is true in general. The main result, Theorem 10, gives a characterization of when $\{ [L : S] | S $ is maximal separable $\}$ is bounded. We also give examples of extensions where p^{n+1} is the bound for $\{ [L : S] | S $ is maximal separable $\}$, $n \geq 1$.

We will need the following notions. $\text{Insep}(L/K) = \log_p [L : K(L^p)]$—the transcendence degree of L/K. Since $\text{insep}(L/K) = 0$ if and only if L is separable over K, $\text{insep}(L/K)$ is a measure of the inseparability of L/K. $\text{Inex}(L/K) = \min \{ r | K(L^p) $ is separable over $K \}$. If L_1 is an intermediate field of L/K, then $\text{inor}(L/K) \geq \text{inor}(L_1/K)$, and we have equality if and only if L^p and $K(L_1^p)$ are linearly disjoint over L^{p^n} for all n. [1, p. 656]. If $\text{inor}(L/K) = \text{inor}(L_1/K)$, then L_1...
is called a form of L/K. The fields $K(L^{(n)}) = \{x \in L \mid x^{p^n} \in K(L^{p^n})\}$ for some $t \geq 0$ were first introduced in [6]. For $n \geq \text{inex}(L/K)$, $K(L^{(n)})$ has $K(L^{p^n})$ as a maximal separable subfield.

Proposition 1. Let $\{L_n \mid 1 \leq n < \infty\}$ be a descending chain of intermediate fields of L/K. Then $\bigcap L_n$ is separable over K if and only if there exists $n_0 < \infty$ such that L_{n_0} is separable over K.

Proof. Inor(L_1/K) \geq inor(L_2/K) $\geq \cdots$ by [1, Theorem 1.2, p. 656]. Since this is a nonincreasing sequence of nonnegative integers, it must eventually become constant. Let n_0 be such that inor(L_{n_0}/K) = inor(L_{n_0+1}/K) = \cdots. Then L_{n_0+j}/K is a form of L_{n_0}/K for all $j \geq 0$. Hence $\bigcap L_n/K$ is a form of L_{n_0}/K by the proof of [1, Theorem 1.4, p. 657]. Thus $\bigcap L_n$ is separable over K if and only if L_{n_0} is separable over K.

Corollary 2. L/K has an infinite descending proper chain of inseparable intermediate fields if and only if there is an intermediate field L_1 which is inseparable over K and over which L is not algebraic.

Proof. This follows from Proposition 1 and the fact that a finitely generated field extension with an infinite proper chain of intermediate fields cannot be an algebraic field extension.

Let \bar{K} denote the algebraic closure of K in L. The following result is [6, Corollary 6, p. 289], however Proposition 1 gives a simple proof.

Corollary 3. \bar{K}/K is separable if and only if $K(L^{(n)}) = K(L^{p^n})$ for some n.

Proof. $K(L^{(n)}) \supseteq K(L^{p^n})$ and has $K(L^{p^n})$ as a maximal separable extension of K in $K(L^{(n)})$. Thus $K(L^{(n)}) = K(L^{p^n})$ if and only if $K(L^{(n)})$ is separable over K. Since $\bigcap K(L^{(n)}) = \bar{K}$ [6, Theorem 5, p. 289], the result follows from Proposition 1.

Recall that a separable extension of S of K is maximal separable extension of K in L if and only if L is purely inseparable over S and $L^p \cap S \subseteq K(S^p)$ [5, Lemma 1.2, p. 46]. In particular, if a relative p-basis for S over K remains p-independent in L, then clearly $L^p \cap S \subseteq K(S^p)$. If $L = L_1(x)$ where x is transcendental over L_1, then L is said to be ruled over L_1.

Theorem 4. If L is ruled over an intermediate field L_1 and L_1 is inseparable over K, then L has maximal separable subfields of arbitrarily large codegree.

Proof. Let $L = L_1(t)$ and let $\{z_1, \ldots, z_r, w_1, \ldots, w_s\}$ be a relative p-basis of L_1/K where $\{z_1, \ldots, z_r\}$ is a separating transcendence basis of a distinguished subfield D_1 of L_1/K. Let $S = D_1(w_1 + t^p)$. Since t is transcendental over L_1, $w_1 + t^p$ is transcendental over D_1 and hence S is separable over K. Since w_1 is purely inseparable over D_1, t, and hence L, is purely inseparable over S. Since $\{z_1, \ldots, z_r, w_1 + t^p\}$ is a relative p-basis of S over K which remains p-independent in L, S is a maximal separable extension of K in L by the comments preceding Theorem 4. Finally, since $S(L_1) = L_1(t^p)$, $p^n = \lbrack L : S(L_1) \rbrack \geq \lbrack L : S \rbrack$, and hence we can find maximal separable subfields of arbitrarily high codegree.
Referee’s Lemma 5 [7, Footnote, p. 354]. If L/L_1 is finite dimensional and L_1/K has maximal separable subfields of arbitrarily high codegree, then so does L.

Proof. Let S_1 be a maximal separable subfield of L_1 of high codegree. Then L_1/S_1 is purely inseparable and L_1 has at most $\log_p[L_1 : K(L_1')]$ generators over S_1. But $\log_p[L_1 : K(L_1')] \leq \log_p[L : K(L^p)] = \text{some fixed constant}$ [8, Lemma 1, p. 111]. There must be an element, say b, of large exponent, say n, over S_1. Let S be a maximal separable extension of K in L containing S_1. S exists by Zorn’s Lemma. Then $S \cap L_1 = S_1$. Thus b is of exponent n over S, and hence $[L : S] \geq p^n$. Thus L has maximal separable subfields of large codegree.

Corollary 6. If $\{(L : S) | S$ is a maximal separable extension of K in $L\}$ is bounded, then any intermediate field L_1 over which L is not algebraic must be separable over K.

Proof. Apply Theorem 4 and Lemma 5.

An intermediate field L_1 of L/K has the same inseparability over K as does L if and only if L^p and $K(L_1')$ are linearly disjoint over L_1' [8, Lemma 1, p. 111]. The proof of [1, Theorem 1.4, p. 657] shows there is a unique minimal intermediate field L_1 which has $\text{insep}(L_1/K) = \text{insep}(L/K)$. ($L_1$ is merely the intersection of all subfields of L_1 with $\text{insep}(L_1/K) = \text{insep}(L/K)$.)

Theorem 7. Assume $\text{insep}(L/K) = 1$. The following are equivalent.

1) $\{(L : S) | S$ is maximal separable extension of K in $L\}$ is bounded.
2) Any intermediate field L_1 over which L is not algebraic must be separable over K.
3) L is algebraic over L_1.

Proof. (1) implies (2) is Corollary 6. Assume (2). Since L_1 is inseparable over K, L must be algebraic over L_1. Assume (3). Let S be maximal separable and let $b \in L \setminus S$ with $b^p \in S$. Then $S(b)$ is inseparable over K, and hence $S(b) \supseteq L_1$. Thus $[L : S] \leq p \cdot \frac{L}{L_1}$.

Example 8. We give a family of extensions L_n/K where $\text{inor}(L_n/K) = 1$ and the bound of Theorem 7 is exactly p^{n+1}. Let $L_n = K(x, z, uz^{p^n} + xv + w), K = P(u^p, v^p, w^p)$ where P is a perfect field of characteristic $p \neq 0$ and $\{x, z, u, v, w\}$ is algebraically independent over P. L_n has a subfield $L_{n_1} = K(x, z^{p^n}, uz^{p^n} + xv + w)$ which is separable algebraic over its irreducible form [2, Example 11, p. 190] and [2, Corollary 7, p. 188], call it L_1. Since $\text{inor}(L_{n_1}/K) = \text{inor}(L_n/K) = 1$, L_1 is the irreducible form of L_n/K. Clearly $[L_n : L_{n_1}] = p^n$. Let S be a maximal separable extension of K in L_n, and let $b \in L_n \setminus S$ with $b^p \in S$. Then $\text{inor}(S(b)/K) = 1$, and hence $S(b)$ must contain L_1. But L_{n_1} is separable algebraic over L_1, and hence is contained in $S(b)$ since L_n is purely inseparable over $S(b)$. Thus $[L_n : S(b)] \leq [L_n : L_{n_1}] = p^n$. Thus $[L_n : S] \leq p^{n+1}$. But $K(x, uz^{p^n} + xv + w)$ is a maximal separable extension of K in L_n (see the comments preceding Theorem 4) which is of codegree p^{n+1}. Thus the bound of Theorem 7 is precisely p^{n+1}.
Theorem 9. Assume \(\text{tr.d.}(L/K) = 1 \). The following are equivalent.

(1) \(\bar{K}/K \) is separable.

(2) There is an integer \(c \) such that any intermediate field \(L_1 \) over which \(L \) is purely inseparable and \([L : L_1] > p^c \) must be separable over \(K \).

(3) \(\{[L : S] : S \text{ is maximal separable} \} \) is bounded.

Proof. Assume (1). The proof is by induction on \(\text{inor}(L/K) \). The result is trivially true for \(\text{inor}(L/K) = 0 \). Assume the result for \(\text{inor}(L/K) < n - 1 \) and let \(\text{inor}(L/K) = n \). Let \(L \) be purely inseparable over \(L_1 \) and suppose \(L_1 \) is inseparable over \(K \). We need to show \([L : L_1] \) must be bounded for all such \(L_1 \). If \(L_1 \) contains a relatively \(p \)-independent element \(x \) of \(L/K \), then \(L_1 \) contains the separable algebraic closure of \(K(x) \), denoted \((K(x))^\circ \), in \(L \), since \(L/L_1 \) is purely inseparable. By the comments preceding Theorem 4, \((K(x))^\circ \) is a maximal separable extension of \(K \) in \(L \). By [7, Theorem 1, p. 353], the degrees of \(L \) over its maximal separable intermediate fields is bounded, and since \(L_1 \supseteq (K(x))^\circ \), the degree of \(L \) over \(L_1 \) is bounded. If \(L_1 \) does not contain a relatively \(p \)-independent element, then \(L_1 \subseteq K(L^p) \). By [1, Lemma 1.1, p. 656], \(\text{inor}(K(L^p)/K) < \text{inor}(L/K) \) when \(\text{inor}(L/K) > 0 \). Thus by induction, the degree of \(K(L^p) \) over \(L_1 \) is bounded, and hence also the degree of \(L \) over \(L_1 \). Clearly (2) implies (1) since \([L : K(L^p)] > p^c \). [7, Theorem 1, p. 353] shows (1) is equivalent to (3).

Theorem 10. \(\{[L : S] : S \text{ is a maximal separable extension of } K \text{ in } L \} \) is bounded if and only if there is an integer \(c \) such that any intermediate field \(L_1 \) over which \(L \) is purely inseparable and \([L : L_1] > p^c \) must be separable over \(K \).

Proof. If \(S \) is maximal separable and \(b \in L \setminus S \) with \(b^p \in S \), then \(S(b) \) is inseparable over \(K \). Thus, the existence of \(c \) guarantees \([L : S(b)] \leq p^c \) and hence \([L : S] \leq p^{c+1} \). Now assume there is a bound on the codegrees of maximal separable subfields. We prove there is a \(c \) by induction on the transcendence degree of \(L/K \).

The case of transcendence degree 1 is Theorem 9. We assume there is a sequence \(\{L_n\} \) of subfields of increasing codegree which are inseparable over \(K \), with \(L/L_n \) purely inseparable, and get a contradiction.

Let \(x \) be a relatively \(p \)-independent element of \(L/K \). Since the codegrees of maximal separable subfields is bounded, \(\bar{K} \) is separable over \(K \) [7, Corollary 2, p. 354]. Thus \(x \) is transcendental over \(K \). Since \(x \) is also relatively \(p \)-independent in \(L/K \), any maximal separable extension of \(K(x) \) in \(L \) is also a maximal separable extension of \(K \) in \(L \). Thus there is a bound on the codegrees of maximal separable extensions of \(K(x) \) in \(L \), and hence by induction, there is a \(c \) for \(L/K(x) \). Since \(x \) is transcendental over \(K \), each \(L_n(x) \) is inseparable over \(K(x) \). Thus the set of codegrees of the \(L_n(x) \) is bounded.

Let \([L : L_n] = p^{d_n} \) where \(d_n \) is an increasing sequence. Let \([L : L_n(x)] \leq p^{c_1} \) where \(c_1 \) is a constant. Consider the finite sequence \(a_1, a_2, \ldots, a_{d_n} \) defined by \(p^{d_n} = [L_n^{p^{d_n - x}}] \cap L \). Note that \([L : L_n] = p^{a_1 + a_2 + \cdots + a_{d_n}} = p^{d_n} \). Since \([L : L_n(x)] \leq p^{c_1} \), \(x \) is of exponent at least \(d_n - c_1 \) over \(L_n \). Thus, for \(i = 1, \ldots, d_n - c_1 \), \(a_i \geq 1 \), and at most the last \(c_1 \) of the \(a_i \)'s are 0. Since \(a_1 + \cdots + a_{d_n} = d_n \), at most \(c_1 \) of the \(a_i \)'s can exceed 1. So, we have a finite sequence of increasing length.
(d_n) with at most a fixed number of elements (2c_j) different from 1. Thus we can find strings of consecutive 1's of increasing length, say w_n, which begin at least as sequence element a_{d_n-w_n} for the sequence associated to L_n. Thus for s = \text{inor}(L/K) + 1, we can find, for large n, fields L'_n \supseteq L_n such that L'_n \cap L is simple over L'_n. Rename this sequence as \{L_n\}.

We now want to see that L'_n \cap L has the same order of inseparability over K as L'_n \cap L has over K, that is L'_n \cap L/K is a form of L_n \cap L/K. We can write L'_n \cap L = L_n(\theta) and L'_n \cap L = L_n(\theta^p). Now, the increase in the order of inseparability of L_n(\theta) depends upon \min\{\max\{r | \theta^r \in K(L'_n(\theta))\}, s\} \text{[4, Theorem 2, p. 374]. But this minimum must be } \max\{r | \theta^r \in K(L'_n(\theta))\} < s \text{ since } s > \text{inor}(L/K). \text{ Since the increase in the order of inseparability of } L'_n(\theta^p) = \min\{\max\{r | \theta^r \in K(L'_n(\theta))\}, s - 1\}, \text{ the increases will be the same, i.e., } L'_n \cap L/K \text{ is a form of } L_n \cap L/K.

By \text{[3, Theorem 3.3]}, L'_n \cap L/K has a distinguished subfield D_n not contained in any of L'_n \cap L. We claim D_n is a maximal separable subfield of L/K. Clearly D_n/K is separable and L/D_n is purely inseparable. Suppose x^p \in D_n, x \notin D_n. If x \in L'_n \cap L then x^p \in K(D'_n) since D_n is maximal separable in L'_n \cap L. If x \notin L'_n \cap L, then x must be in L'_n \cap L since L'_n \cap L is simple over L_n by construction. If x^p were not in K(D'_n), then by a degree argument D_n(x) would be distinguished for L'_n \cap L/K, a contradiction. Thus the sequence of \{D_n\} is a set of maximal separable extensions of K of unbounded codegree, a contradiction. Thus there is a c as in the statement of the theorem.

It is clear that the existence of a c as in the previous theorem implies that any subfield L_1 over which L is not algebraic must be separable over K. The converse is true in the transcendence degree (L/K) = 1 case, Theorem 9, or the insep(L/K) = 1 case, Theorem 7. We conjecture that it is true in general.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, VIRGINIA COMMONWEALTH UNIVERSITY, RICHMOND, VIRGINIA 23284

DEPARTMENT OF MATHEMATICS, CREIGHTON UNIVERSITY, OMAHA, NEBRASKA 68178