Affine geometry: a lattice characterization
HTML articles powered by AMS MathViewer
- by M. K. Bennett
- Proc. Amer. Math. Soc. 88 (1983), 21-26
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691271-5
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for a lattice $L$ to be the lattice of flats of an affine space of arbitrary (possibly infinite) dimension.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Garrett Birkhoff, Combinatorial relations in projective geometries, Ann. of Math. (2) 36 (1935), no. 3, 743–748. MR 1503250, DOI 10.2307/1968656
- Saul Gorn, On incidence geometry, Bull. Amer. Math. Soc. 46 (1940), 158–167. MR 1006, DOI 10.1090/S0002-9904-1940-07160-5
- David Hilbert, Foundations of geometry, 2nd ed., Open Court, La Salle, Ill., 1971. Translated from the tenth German edition by Leo Unger. MR 0275262
- F. Maeda and S. Maeda, Theory of symmetric lattices, Die Grundlehren der mathematischen Wissenschaften, Band 173, Springer-Verlag, New York-Berlin, 1970. MR 0282889
- Karl Menger, New foundations of projective and affine geometry, Ann. of Math. (2) 37 (1936), no. 2, 456–482. In collaboration with Franz Alt and Otto Schreiber. MR 1503293, DOI 10.2307/1968458
- Usa Sasaki, Lattice theoretic characterization of geometries satisfying “Axiome der Verknüpfung.”, J. Sci. Hiroshima Univ. Ser. A 16 (1953), 417–423. MR 60837
- Usa Sasaki, Lattice theoretic characterization of an affine geometry of arbitrary dimensions, J. Sci. Hiroshima Univ. Ser. A 16 (1952), 223–238. MR 60473
- Ernst Snapper and Robert J. Troyer, Metric affine geometry, Academic Press, New York-London, 1971. MR 0300190
- Oswald Wyler, Incidence geometry, Duke Math. J. 20 (1953), 601–610. MR 58227
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 21-26
- MSC: Primary 51D25; Secondary 05B35, 06C10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691271-5
- MathSciNet review: 691271