Length and area estimates of the derivatives of bounded holomorphic functions
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Proc. Amer. Math. Soc. 88 (1983), 29-33
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691273-9
- PDF | Request permission
Abstract:
MacGregor [1] and Yamashita [5] proved the estimates of the coefficient ${a_n}$ of the Taylor expansion $f(z) = {a_0} + {a_n}{z^n} + \cdots$ of $f$ nonconstant and holomorphic in $|z| < 1$ in terms of the area of the image of $|z| < r < 1$ by $f$ and the length of its outer or exact outer boundary. We shall consider some analogous estimates in terms of the non-Euclidean geometry for $f$ bounded, $|f| < 1$, in $|z| < 1$. For example, $2\pi {r^n}|{a_n}|/(1 - |{a_0}{|^2})$ is strictly less than the non-Euclidean length of the boundary of the image of $|z| < r$, the multiplicity not being counted.References
- Thomas H. MacGregor, Length and area estimates for analytic functions, Michigan Math. J. 11 (1964), 317–320. MR 171003
- Thomas H. MacGregor, Translations of the image domains of analytic functions, Proc. Amer. Math. Soc. 16 (1965), 1280–1286. MR 194600, DOI 10.1090/S0002-9939-1965-0194600-3 W. K. Hayman, Mullivalent functions, Cambridge Univ. Press, London, 1967.
- Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR 500557, DOI 10.1090/S0002-9904-1978-14553-4
- Shinji Yamashita, Length estimates for holomorphic functions, Proc. Amer. Math. Soc. 81 (1981), no. 2, 250–252. MR 593467, DOI 10.1090/S0002-9939-1981-0593467-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 29-33
- MSC: Primary 30C50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691273-9
- MathSciNet review: 691273