On a Tauberian theorem for the $L^{1}$-convergence of Fourier sine series
HTML articles powered by AMS MathViewer
- by William O. Bray
- Proc. Amer. Math. Soc. 88 (1983), 34-38
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691274-0
- PDF | Request permission
Abstract:
In a recent Tauberian theorem of Stanojević [3] for the ${L^1}$-convergence of Fourier series, the notion of asymptotically even sequences is introduced. These conditions are satisfied if the Fourier coefficients $\{ \hat f(n)\}$ are even $(\hat f( - n) = \hat f(n))$, a case formally equivalent to cosine Fourier series. This paper applies the Tauberian method of Stanojević [3] separately to cosine and sine Fourier series and shows that the notion of asymptotic evenness can be circumvented in each case.References
- A. N. Kolmogorov, Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesque, Bull. Internat. Acad. Polon. Sci. Lett. Cl. Sci. Math. Nat. Ser. A Sci. Math. (1923), 83-86.
- Časlav V. Stanojević, Classes of $L^{1}$-convergence of Fourier and Fourier-Stieltjes series, Proc. Amer. Math. Soc. 82 (1981), no. 2, 209–215. MR 609653, DOI 10.1090/S0002-9939-1981-0609653-4
- Časlav V. Stanojević, Tauberian conditions for $L^{1}$-convergence of Fourier series, Trans. Amer. Math. Soc. 271 (1982), no. 1, 237–244. MR 648089, DOI 10.1090/S0002-9947-1982-0648089-2
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 34-38
- MSC: Primary 42A20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691274-0
- MathSciNet review: 691274