Another proof of the existence of the ergodic Hilbert transform
HTML articles powered by AMS MathViewer
- by Karl Petersen
- Proc. Amer. Math. Soc. 88 (1983), 39-43
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691275-2
- PDF | Request permission
Abstract:
We give a direct proof of the existence of the ergodic Hilbert transform $\sum _{k = - \infty }^{\infty ’}f({T^k}x)/k$, where $T:X \to X$ is a measure-preserving transformation and $f$ is an integrable function.References
- E. Atencia and A. de la Torre, A dominated ergodic estimate for ${L^p}$ spaces with weights (preprint).
- E. Atencia and F. J. Martín-Reyes, The maximal ergodic Hilbert transform with weights, Pacific J. Math. 108 (1983), no. 2, 257–263. MR 713735 G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals, Philos. Trans. Roy. Soc. London 147 (1857), 745-803.
- A.-P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353. MR 227354, DOI 10.1073/pnas.59.2.349
- Mischa Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167 (1956) (English, with Spanish summary). MR 84632 Alberto de la Torre, Ergodic ${H^1}$ spaces, Bol. Soc. Mat. Mexicana 22 (1977), 10-22.
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Roger L. Jones, An analog of the Marcinkiewicz integral in ergodic theory, Studia Math. 68 (1980), no. 3, 281–289. MR 599150, DOI 10.4064/sm-68-3-281-289
- Lynn H. Loomis, A note on the Hilbert transform, Bull. Amer. Math. Soc. 52 (1946), 1082–1086. MR 19155, DOI 10.1090/S0002-9904-1946-08713-3
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 39-43
- MSC: Primary 28D05; Secondary 42A50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691275-2
- MathSciNet review: 691275