On an elliptic boundary value problem not in divergence form
HTML articles powered by AMS MathViewer
- by Nguyên Phuong Các
- Proc. Amer. Math. Soc. 88 (1983), 47-52
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691277-6
- PDF | Request permission
Abstract:
Let $G$ be a bounded domain in ${R^n}(n \geqslant 2)$ with smooth boundary $\partial G$. We consider the boundary value problem $Mu - cu = f$ on $G$, $u = 0$ on $\partial G$, where $M$ is an elliptic differential operator not in divergence form. We discuss the characterization of the first eigenvalue ${\lambda _0}$ of $M$ and the solvability of the boundary value problem in terms of the relationship between $c( \cdot )$ and ${\lambda _0}$.References
- Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 415432, DOI 10.1137/1018114
- Jean-Michel Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A333–A336 (French). MR 223711
- Maurizio Chicco, Solvability of the Dirichlet problem in $H^{2},\,^{p}(\Omega )$ for a class of linear second order elliptic partial differential equations, Boll. Un. Mat. Ital. (4) 4 (1971), 374–387. MR 0298209
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Pierre-Louis Lions, Problèmes elliptiques du 2ème ordre non sous forme divergence, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 263–271 (French, with English summary). MR 559671, DOI 10.1017/S0308210500017133
- James Serrin, A remark on the preceding paper of Herbert Amann: “A uniqueness theorem for nonlinear elliptic boundary value problems” (Arch. Rational Mech. Anal. 44 (1971/72), 178–181), Arch. Rational Mech. Anal. 44 (1971/72), 182–186. MR 410080, DOI 10.1007/BF00250777
- Herbert Amann and Michael G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 779–790. MR 503713, DOI 10.1512/iumj.1978.27.27050
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 47-52
- MSC: Primary 35P15; Secondary 35J25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691277-6
- MathSciNet review: 691277