Approximate identities and $H^{1}(\textbf {R})$
HTML articles powered by AMS MathViewer
- by Akihito Uchiyama and J. Michael Wilson
- Proc. Amer. Math. Soc. 88 (1983), 53-58
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691278-8
- PDF | Request permission
Abstract:
Let $\varphi (x) \in {L^1}({\mathbf {R}}) \cap {L^\infty }({\mathbf {R}})$ be a real-valued function with $\int \limits _{\mathbf {R}} {\varphi dx \ne 0}$. For $y > 0$, let ${\varphi _y}(x) = {y^{ - 1}}\varphi (x/y)$. For $f(x) \in {L^1}({\mathbf {R}})$ define \[ f_\varphi ^*(x) = \sup \limits _{y > 0,t \in {\mathbf {R}}:|x - t| < y} |f * {\varphi _y}(t)|.\] We investigate the space $H_\varphi ^1 = \{ f \in {L^1}({\mathbf {R}}):f_\varphi ^* \in {L^1}({\mathbf {R}})\}$.References
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no.ย 4, 569โ645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no.ย 3-4, 137โ193. MR 447953, DOI 10.1007/BF02392215
- Guido Weiss, Some problems in the theory of Hardy spaces, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp.ย 189โ200. MR 545258
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 53-58
- MSC: Primary 42B30; Secondary 30D55, 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691278-8
- MathSciNet review: 691278