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APPROXIMATE IDENTITIES AND H'(R)
AKIHITO UCHIYAMA AND J. MICHAEL WILSON

ABSTRACT. Let @(x) € L'(R) N L*(R) be a real-valued function with fro dx # 0.
Fory >0, letg(x) = v lp(x/y). For f(x) € L'(R) define

fo(x) = sup [fxe ()] .

v>0ER: x| <y

We investigate the space H; ={fe L'(R):f; e I.l(R)}.

1. Introduction. If ¢ is the Poisson kernel, then H_ is defined to be H'. Fefferman
and Stein (2] showed that Hy = H' for any ¢ that is smooth and dies quickly at
infinity; e.g. ¢ can be in the Schwartz class, or Lipschitz continuous (of any order)
and compactly supported. However, it is easy to show that Hq', = {0} if ¢ = x(0.)
(see [3]), where x [ is the characteristic function of a set E. G. Weiss asked whether
there was an Hq') that was nontrivial but not H'. In this note, we show the following
two results.

THEOREM 1. Iqu! # {0}, then a(x) € Hq',, where

1 0<x<l,
a(x)=41-1 -1<x<0,
0 otherwise.

THEOREM 2. There exists @(x) = 0 such that H, # {0}, H, = H'.
As a corollary of Theorem 1, we get
COROLLARY 1. If H} # {0}, then H, N H' is dense in H'.

Comment on notation. To distinguish the “y” in @ (x) (= y~'o(x/y)) from the
other subindices, in the following we write (@), instead of ¢,. The letter C denotes
various constants.

2. Proof of Theorem 1. For f € H_ define
WMy = A

This norm makes Hq') a Banach space. We use two simple facts about || || HY
Fact 1.Iff€ H), g € L', then f x g € H] with

Wf* gl <Ufllighp.
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Fact2.If y > 0 and f € H,, then
)Wy = 1 f

Let f € H!, f= 0 and fix f. In the following part of this section, the constants ¢
depend on this function f. We may assume that f is real-valued (since ¢ is
real-valued). We shall construct functions p,, g, (—o0 < n < 00) satisfying

(1) I 2l < e
e ¢]

(2) S g, ll < +oo.
- oC

(3) a= 3 p,*g,

where the convergence is in Hq‘). This implies the theorem.
The construction of p, and g,,. Since f Z 0 and since f is real-valued, we may assume
there exist » > 1 and ¢ > 0 such that

[f(&)|>e on[-r,—r'JU[r. r].

Let Y(x) € &(R) be a real-valued even function such that

supp § C [-r.—r"'JU [r7', 7], § x[:(r"f)z =1 foranyé§ 0.

k=-oc

Now we invoke Wiener’s Lemma: Let f,(x), f,(x) € L'(R). If there exist an ¢ > 0
and an interval I C R for which |f,(§)|> ¢, £ € I, and supp f, C 1, then there is an
h(x) € L'(R) such that f,(§) = h(§)f,(§).

Applying Wiener’s Lemma to f(x) and (;,bx((,m))v , we get h,(x) € L'(R) such
that

¥ (E)x.el§) = B(§)1(£).
Set A() = hy(§) + Ai(-£). Then §(£) = A(§)/(¢), and
(4) Il < HRU LISy < cll fll g
We now define
Pa(x) = (¥)r(x), gu(x) = ax (¥)(x).
Then (1) follows from (4). By taking Fourier transforms, we see that a =

2% Do * 8,In S Toestimate || g, 1l 1, we divide into two cases.
Case 1. n = 0. We write

| 8.(x) |=’f_]lr'"xl/(r'"(x —1))a(t) dt’

=y

f_ll(‘l’(r—"(x — 1)) = ¢(r~"x))a(t) dt‘

<c™"  sup  |Y(t)|<cr¥R(rx),
Ir"x—q<r”
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where R(x) = sup,, <, |¢'(y)| . Therefore,
g, ll < cr‘z"fR(r"’x) dx <cr".

Case 2. n < 0. We distinguish three subcases.
Subcase 1. | x |> 3.

(8.0 =] [ e = )ato) = e g ()

(y is rapidly decreasing). Thus, [, ;] g,(x)|< cr3n,
Subcase 2. | x |< 3, min(|x|,|x + 1|,|x — 1]) = r"/2 These x’s are away from
the discontinuities of a(x). We have

lg.(x)|< +

/ T = )al) a

|x—1

e dt

The second term can be estimated as in the first subcase. The first term equals zero
or it equals | [, ,-»2¢(¢) dt | (because [Y(t) dt = 0). This is dominated by cr”, since
Y is rapidly decreasing.

Subcase 3. min(|x|,|x + 1],|x — 1])<r"/% Here the best we can do is
| a * §;,(x) | < c. But the measure of this set is < 6r"/2.

Combining the three subcases yields for n <0, llg,ll,1 <cr"/%. We therefore
have (2).

3. Proof of Corollary 1. It is well known that the dual space of H' is the space
BMO (see [2]). This is the space of locally integrable functions A(x) that satisfy

sup | 11" [[h(x) = h;| dx = lIAll, < oo
I I

The supremum is over all intervals I C R; h, denotes the average of h(x) over 1.

Clearly a(x) € H'. Also H' and HJ, are closed under translations and dilations. If
Hq', N H' is not dense, then there is an h € BMO such that |l4]l, =1 but
Jh(x)g(x)dx =0, for any g € H, N H'. The same must hold for any dilation or
translation of a(x). This implies that A is constant and || 4[|, = 0.

4. Proof of Theorem 2. An examination of the proof of Theorem 1 shows that it
works because of the relative smoothness of a(x). In this section, we exhibit an Hq‘)
that is not trivial or H', by building functions b(x) € H' and ¢(x), each of which
has “large” high frequency terms in its Fourier series. The high frequencies of ¢(x)
almost cancel out when ¢(x) is convolved with a(x), but they match up with those
of b(x) to make b(x) & H,.

Forn=1,2,3,...,define

P-n(x) = E sin(2k'rrx)x“’2](x).

We estimate | a * (p,,),(x) | as follows.
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Case l.y < 1.
lax (1), (x)|<C 2 (1/y)(»/2%) < C.
k=1

Case2.y > 2".
lax(p,),(x)[<C 2 (1/p)(2/y) < C2"/y*.
k=1

Case3. 1<y<?2".

lax(p,),(x)|<C 2 w2 +c 2 )@y <y

log, v<k<n I<k<log, v
Now observe thata  (p,), (1) = 0if y < (r — 1)/2 ory < (-t — 1)/2. Thus
C if | x|<1,
a¥(x) < C/|x| ifl<|x|<6-2",
c2'/|x)? if6-2"<|x|.
This yields lla} Il ;1 < Cn.
If « > 1, then by
ax (p,(a-)), (1) =alax(p,),/ur),
and by similar observations as above, we get
(5) ”a:"(aA)HLl < Cn.

where C does not depend on a > 1.
Define

0
a,=2",  n(x)= 2 n? ", (a,x),

n=1
where g, > 0 is a small number. Then, by (5) we have

(6) layll < Zn27%llay o Il o< CEn™' 70 < +oo.
n

n

Let € > 0 be a small number. Define
b(x) = - X k™'"sin(2%7x ) x5 y(x).
k=1

From the fact that b € L?, [bdx = 0 and supp b C [-2, -1], it follows that b € H'
(see [1]).

We claim that forn > N and 0 < i < n/2,

’fb(x)p.,,(?‘(—x — 1) + 1) dx|= C.n".
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This is because the left-hand side equals

/b(x) 2 sin(247(27(~x — 1) + 1)) dx

k=i+1

+fb(x) 2 sin(2%7 (277 (—x — 1) + 1)) dx

k=1
The first integral equals

1 & e
5 2 (k—i)'""" = cCn"
k=i+1

The second integral is no larger than

ol

ig (sin(2*7(27/(—x — 1)) + 1))’

o~ k=1

(since [ b dx = 0). Thus

’fb(x)pn(2"(—x —1)+1)dx

=Cn*— C=(Cn",
if
(7) 0<i<n/2 and n>N,.

Therefore, if (7) holds,

brnya (2 — 1) = (Zian)_In‘Z'EO/b(x)un(2'i(2i —1—x))dx

=’ (21 ) -2- ~egte

57

Thus, b¥(x)= C/Qa,)'n>"%* on E,, = {x: 2 'a, <|x|<2a, — (2 — ).

Thus,
[ brde= s,
£
E"J

which yields, upon summing for 0 <i < n/2,

] b¥ dx = Cln™' oo+,
a,<|x|<2"a,
Therefore
(8) 16Xl = C, Xn! "ot = + oo,
n

ifey <e

Take »(x) €S such that »(x)+ n(x)=0 for any x € R. Then the kernel

@ = » + 7 is nonnegative and a} € L' and b} & L', by (6) and (8). Thus
H,#{0} and H)#H'
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