APPROXIMATE IDENTITIES AND $H^{1}(R)$

AKIHITO UCHIYAMA AND J. MICHAEL WILSON

ABSTRACT. Let $\varphi(x) \in L^1(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ be a real-valued function with $\int_{\mathbf{R}} \varphi \ dx \neq 0$. For y > 0, let $\varphi_y(x) = y^{-1} \varphi(x/y)$. For $f(x) \in L^1(\mathbf{R})$ define

$$f_{\varphi}^*(x) = \sup_{y>0, t \in \mathbf{R}: |x-t| \le y} |f * \varphi_y(t)|.$$

We investigate the space $H_{\varphi}^1 = \{ f \in L^1(\mathbf{R}) : f_{\varphi}^* \in L^1(\mathbf{R}) \}.$

1. Introduction. If φ is the Poisson kernel, then H_{φ}^1 is defined to be H^1 . Fefferman and Stein [2] showed that $H_{\varphi}^1 = H^1$ for any φ that is smooth and dies quickly at infinity; e.g. φ can be in the Schwartz class, or Lipschitz continuous (of any order) and compactly supported. However, it is easy to show that $H_{\varphi}^1 = \{0\}$ if $\varphi = \chi_{[0,1]}$ (see [3]), where χ_E is the characteristic function of a set E. G. Weiss asked whether there was an H_{φ}^1 that was nontrivial but not H^1 . In this note, we show the following two results.

THEOREM 1. If $H_{\omega}^1 \neq \{0\}$, then $a(x) \in H_{\omega}^1$, where

$$a(x) = \begin{cases} 1 & 0 < x < 1, \\ -1 & -1 < x < 0, \\ 0 & otherwise. \end{cases}$$

THEOREM 2. There exists $\varphi(x) \ge 0$ such that $H_{\varphi}^1 \ne \{0\}, H_{\varphi}^1 \ne H^1$.

As a corollary of Theorem 1, we get

COROLLARY 1. If $H_m^1 \neq \{0\}$, then $H_m^1 \cap H^1$ is dense in H^1 .

Comment on notation. To distinguish the "y" in $\varphi_y(x)$ (= $y^{-1}\varphi(x/y)$) from the other subindices, in the following we write $(\varphi)_y$ instead of φ_y . The letter C denotes various constants.

2. Proof of Theorem 1. For $f \in H^1_{\omega}$ define

$$||f||_{H^{1}_{\omega}} = ||f_{\varphi}^{*}||_{L^{1}}.$$

This norm makes H_{φ}^1 a Banach space. We use two simple facts about $\| \|_{H_{\varphi}^1}$. FACT 1. If $f \in H_{\varphi}^1$, $g \in L^1$, then $f * g \in H_{\varphi}^1$ with

$$||f * g||_{H^1_\alpha} \le ||f||_{H^1_\alpha} ||g||_{L^1}.$$

Received by the editors February 16, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 42B30; Secondary 46J15.

Key words and phrases. H1, BMO, maximal functions.

FACT 2. If y > 0 and $f \in H^1_{\infty}$, then

$$\|(f)_v\|_{H^1_n} = \|f\|_{H^1_n}.$$

Let $f \in H^1_{\varphi}$, $f \not\equiv 0$ and fix f. In the following part of this section, the constants c depend on this function f. We may assume that f is real-valued (since φ is real-valued). We shall construct functions p_n , g_n ($-\infty < n < \infty$) satisfying

$$\|p_n\|_{H^1_\infty} \leq c,$$

(2)
$$\sum_{n=-\infty}^{\infty} \|g_n\|_{L^1} < +\infty,$$

(3)
$$a = \sum_{n=-\infty}^{\infty} p_n * g_n,$$

where the convergence is in H^1_{∞} . This implies the theorem.

The construction of p_n and g_n . Since $f \neq 0$ and since f is real-valued, we may assume there exist r > 1 and $\varepsilon > 0$ such that

$$|\hat{f}(\xi)| > \varepsilon$$
 on $[-r, -r^{-1}] \cup [r^{-1}, r]$.

Let $\psi(x) \in S(\mathbf{R})$ be a real-valued even function such that

$$\operatorname{supp} \hat{\psi} \subset [-r, -r^{-1}] \cup [r^{-1}, r], \qquad \sum_{k=-\infty}^{\infty} \hat{\psi} (r^k \xi)^2 \equiv 1 \quad \text{for any } \xi \neq 0.$$

Now we invoke Wiener's Lemma: Let $f_1(x)$, $f_2(x) \in L^1(\mathbf{R})$. If there exist an $\varepsilon > 0$ and an interval $I \subset \mathbf{R}$ for which $|\hat{f}_1(\xi)| > \varepsilon$, $\xi \in I$, and supp $\hat{f}_2 \subset I$, then there is an $h(x) \in L^1(\mathbf{R})$ such that $\hat{f}_2(\xi) = \hat{h}(\xi)\hat{f}_1(\xi)$.

Applying Wiener's Lemma to f(x) and $(\hat{\psi}\chi_{(0,\infty)})^{\vee}$, we get $h_1(x) \in L^1(\mathbf{R})$ such that

$$\hat{\psi}(\xi)\chi_{(0,\infty)}(\xi) = \hat{h}_1(\xi)\hat{f}(\xi).$$

Set $\hat{h}(\xi) = \hat{h}_1(\xi) + \hat{\bar{h}}_1(-\xi)$. Then $\hat{\psi}(\xi) = \hat{h}(\xi)\hat{f}(\xi)$, and (4) $\|\psi\|_{H_1^\perp} \le \|h\|_{L^1} \|f\|_{H^1} \le c \|f\|_{H^1}$.

We now define

$$p_n(x) = (\psi)_{r^n}(x), \quad g_n(x) = a * (\psi)_{r^n}(x).$$

Then (1) follows from (4). By taking Fourier transforms, we see that $a = \sum_{n=-\infty}^{\infty} p_n * g_n$ in S'. To estimate $\|g_n\|_{L^1}$, we divide into two cases.

Case 1. $n \ge 0$. We write

$$|g_{n}(x)| = \left| \int_{-1}^{1} r^{-n} \psi(r^{-n}(x-t)) a(t) dt \right|$$

$$= r^{-n} \left| \int_{-1}^{1} (\psi(r^{-n}(x-t)) - \psi(r^{-n}x)) a(t) dt \right|$$

$$\leq c r^{-2n} \sup_{|r^{-n}x-t| < r^{-n}} |\psi'(t)| \leq c r^{-2n} R(r^{-n}x),$$

where $R(x) = \sup_{|x-y|<1} |\psi'(y)|$. Therefore,

$$\|g_n\|_{L^1} \le cr^{-2n} \int R(r^{-n}x) dx \le cr^{-n}.$$

Case 2. n < 0. We distinguish three subcases.

Subcase 1. |x| > 3.

$$|g_n(x)| = \left| \int_{-1}^1 r^{-n} \psi(r^{-n}(x-t)) a(t) dt \right| \le cr^{-n} / (r^{-n} |x|)^4$$

(ψ is rapidly decreasing). Thus, $\int_{|x|>3} |g_n(x)| \le cr^{3n}$. Subcase 2. $|x| \le 3$, $\min(|x|, |x+1|, |x-1|) \ge r^{n/2}$. These x's are away from the discontinuities of a(x). We have

$$|g_n(x)| \le \left| \int_{|x-t| < r^{n/2}} r^{-n} \psi(r^{-n}(x-t)) a(t) dt \right| + \left| \int_{|x-t| > r^{n/2}} \cdots dt \right|$$

The second term can be estimated as in the first subcase. The first term equals zero or it equals $\int_{|t|>r^{-n/2}} \psi(t) dt$ (because $\int \psi(t) dt = 0$). This is dominated by cr^n , since ψ is rapidly decreasing.

Subcase 3. $\min(|x|, |x+1|, |x-1|) < r^{n/2}$. Here the best we can do is $|a * \psi_n(x)| \le c$. But the measure of this set is $\le 6r^{n/2}$.

Combining the three subcases yields for n < 0, $\|g_n\|_{L^1} \le cr^{n/2}$. We therefore have (2).

3. Proof of Corollary 1. It is well known that the dual space of H^1 is the space BMO (see [2]). This is the space of locally integrable functions h(x) that satisfy

$$\sup_{I} |I|^{-1} \int_{I} |h(x) - h_{I}| dx = ||h||_{*} < \infty.$$

The supremum is over all intervals $I \subset \mathbf{R}$; h_I denotes the average of h(x) over I.

Clearly $a(x) \in H^1$. Also H^1 and H^1_{ω} are closed under translations and dilations. If $H^1_{\infty} \cap H^1$ is not dense, then there is an $h \in BMO$ such that $||h||_* = 1$ but $\int h(x)g(x) dx = 0$, for any $g \in H^1_{\infty} \cap H^1$. The same must hold for any dilation or translation of a(x). This implies that h is constant and $||h||_* = 0$.

4. Proof of Theorem 2. An examination of the proof of Theorem 1 shows that it works because of the relative smoothness of a(x). In this section, we exhibit an H_n^1 that is not trivial or H^1 , by building functions $b(x) \in H^1$ and $\varphi(x)$, each of which has "large" high frequency terms in its Fourier series. The high frequencies of $\varphi(x)$ almost cancel out when $\varphi(x)$ is convolved with a(x), but they match up with those of b(x) to make $b(x) \notin H^1_{\infty}$.

For n = 1, 2, 3, ..., define

$$\mu_n(x) = \sum_{k=1}^n \sin(2^k \pi x) \chi_{[1,2]}(x).$$

We estimate $|a * (\mu_n)_v(x)|$ as follows.

Case 1. y < 1.

$$|a*(\mu_n)_y(x)| \le C \sum_{k=1}^n (1/y)(y/2^k) \le C.$$

Case 2. $y > 2^n$.

$$|a*(\mu_n)_y(x)| \le C \sum_{k=1}^n (1/y)(2^k/y) \le C2^n/y^2.$$

Case 3. $1 \le y \le 2^n$.

$$|a*(\mu_n)_y(x)| \le C \sum_{\log_2 y \le k \le n} (1/y)(y/2^k) + C \sum_{1 \le k \le \log_2 y} (1/y)(2^k/y) \le C/y.$$

Now observe that $a * (\mu_n)_v(t) = 0$ if $y \le (t-1)/2$ or $y \le (-t-1)/2$. Thus

$$a_{\mu_n}^*(x) \le \begin{cases} C & \text{if } |x| \le 1, \\ C/|x| & \text{if } 1 \le |x| \le 6 \cdot 2^n, \\ C2^n/|x|^2 & \text{if } 6 \cdot 2^n \le |x|. \end{cases}$$

This yields $||a_{\mu_n}^*||_{L^1} \leq Cn$.

If $\alpha > 1$, then by

$$a * (\mu_n(\alpha \cdot))_{\nu}(t) = \alpha^{-1}a * (\mu_n)_{\nu \neq \alpha}(t),$$

and by similar observations as above, we get

$$||a_{u_{-}(\alpha+)}^*||_{L^1} \leq Cn,$$

where C does not depend on $\alpha > 1$.

Define

$$\alpha_n = 2^{2^n}, \qquad \eta(x) = \sum_{n=1}^{\infty} n^{-2-\epsilon_0} \mu_n(\alpha_n x),$$

where $\varepsilon_0 > 0$ is a small number. Then, by (5) we have

(6)
$$||a_{\eta}^{*}||_{L^{1}} \leq \sum_{n} n^{-2-\epsilon_{0}} ||a_{\mu_{n}(\alpha_{n}+)}^{*}||_{L^{1}} \leq C \sum_{n} n^{-1-\epsilon_{0}} < + \infty.$$

Let $\varepsilon > 0$ be a small number. Define

$$b(x) = -\sum_{k=1}^{\infty} k^{-1+\epsilon} \sin(2^k \pi x) \chi_{[-2,-1]}(x).$$

From the fact that $b \in L^2$, $\int b \, dx = 0$ and supp $b \subset [-2, -1]$, it follows that $b \in H^1$ (see [1]).

We claim that for $n > N_c$ and $0 \le i \le n/2$,

$$\left| \int b(x) \mu_n (2^{-i}(-x-1)+1) \, dx \right| \ge C_{\varepsilon} n^{\varepsilon}.$$

This is because the left-hand side equals

$$\left| \int b(x) \sum_{k=i+1}^{n} \sin(2^{k} \pi (2^{-i}(-x-1)+1)) dx + \int b(x) \sum_{k=1}^{i} \sin(2^{k} \pi (2^{-i}(-x-1)+1)) dx \right|.$$

The first integral equals

$$\frac{1}{2} \sum_{k=i+1}^{n} (k-i)^{-1+\epsilon} \ge C_{\epsilon} n^{\epsilon}.$$

The second integral is no larger than

$$||b||_1 \left| \sum_{k=1}^i \left(\sin \left(2^k \pi \left(2^{-i} (-x-1) \right) + 1 \right) \right)' \right|_{\infty} \le C \sum_{k=1}^i 2^{k-i} \le C$$

(since $\int b dx = 0$). Thus

$$\left| \int b(x) \mu_n (2^{-i}(-x-1)+1) \, dx \right| \ge C_{\varepsilon} n^{\varepsilon} - C \ge C_{\varepsilon}' n^{\varepsilon},$$

if

(7)
$$0 \le i \le n/2 \quad \text{and} \quad n > N_{\varepsilon}$$

Therefore, if (7) holds,

$$b*\eta_{2^{i}\alpha_{n}}(2^{i}-1) = (2^{i}\alpha_{n})^{-1}n^{-2-\epsilon_{0}}\int b(x)\mu_{n}(2^{-i}(2^{i}-1-x)) dx$$

$$\geq C'_{\epsilon}(2^{i}\alpha_{n})^{-1}n^{-2-\epsilon_{0}+\epsilon}.$$

Thus, $b_{\eta}^{*}(x) \ge C_{\epsilon}'(2^{i}\alpha_{n})^{-1}n^{-2-\epsilon_{0}+\epsilon}$ on $E_{n,i} = \{x: 2^{i-1}\alpha_{n} < |x| < 2^{i}\alpha_{n} - (2^{i}-1)\}$. Thus,

$$\int_{E_{n,i}} b_{\eta}^* dx \ge C_{\varepsilon}' n^{-2-\varepsilon_0+\varepsilon},$$

which yields, upon summing for $0 < i \le n/2$,

$$\int_{\alpha_{-} \le |x| \le 2^{n/2} \alpha_{-}} b_{\eta}^{*} dx \ge C_{\varepsilon}' n^{-1 - \varepsilon_{0} + \varepsilon}.$$

Therefore

(8)
$$||b_{\eta}^{*}||_{L^{1}} \geq C_{\varepsilon}' \sum_{n} n^{-1-\varepsilon_{0}+\varepsilon} = +\infty,$$

if $\varepsilon_0 < \varepsilon$.

Take $\nu(x) \in \mathbb{S}$ such that $\nu(x) + \eta(x) \ge 0$ for any $x \in R$. Then the kernel $\varphi = \nu + \eta$ is nonnegative and $a_{\varphi}^* \in L^1$ and $b_{\varphi}^* \notin L^1$, by (6) and (8). Thus

$$H^1_{\infty} \neq \{0\}$$
 and $H^1_{\infty} \neq H^1$.

REFERENCES

- 1. R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-646.
 - 2. C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
- 3. G. Weiss, Some problems in the theory of Hardy spaces, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R. I., 1979, pp. 189-200.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637 (Current address of J. M. Wilson)

Current address (Akihito Uchiyama): Department of Mathematics, College of General Education, Tõhoku University, Sendai, Miyagi-ken, 980, Japan