On Hardy’s inequality in weighted rearrangement invariant spaces and applications. I
HTML articles powered by AMS MathViewer
- by Lech Maligranda
- Proc. Amer. Math. Soc. 88 (1983), 67-74
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691280-6
- PDF | Request permission
Abstract:
We give inequalities relating the norm of a function and the norm of its average operators ${P_\psi },{Q_\psi }$ and ${S_\psi },{T_\psi }$ in weighted rearrangement invariant spaces ${E_{\kappa ,\delta }}$ and $E(\mu ),d\mu (t) = \tau ’(t)dt$. These average operators include, for example, the integral mean, the ${P_p},{Q_p}$ operators of Boyd [4] and Butzer and Fehér [6], the average operators ${P_\varphi },{Q_\varphi }$ and ${S_E},{T_E}$ from [14,15,16]. In the particular case, for some $\psi ,\kappa ,\delta ,\tau$ and $E$ these inequalities were obtained by many authors and applied to a study of interpolation operators and imbedding theorems for Sobolev weight spaces.References
- Kenneth F. Andersen, On Hardy’s inequality and Laplace transforms in weighted rearrangement invariant spaces, Proc. Amer. Math. Soc. 39 (1973), 295–299. MR 315071, DOI 10.1090/S0002-9939-1973-0315071-4
- Colin Bennett, Intermediate spaces and the class $\textrm {L} \log ^{+L}$, Ark. Mat. 11 (1973), 215–228. MR 352966, DOI 10.1007/BF02388518
- D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canadian J. Math. 19 (1967), 599–616. MR 212512, DOI 10.4153/CJM-1967-053-7
- David W. Boyd, Indices of function spaces and their relationship to interpolation, Canadian J. Math. 21 (1969), 1245–1254. MR 412788, DOI 10.4153/CJM-1969-137-x
- David W. Boyd, Indices for the Orlicz spaces, Pacific J. Math. 38 (1971), 315–323. MR 306887, DOI 10.2140/pjm.1971.38.315
- P. L. Butzer and F. Fehér, Generalized Hardy and Hardy-Littlewood inequalities in rearrangement-invariant spaces, Comment. Math. Spec. Issue 1 (1978), 41–64. Special issue dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday. MR 504152
- F. Fehér, A note on weak-type interpolation and function spaces, Bull. London Math. Soc. 12 (1980), no. 6, 443–451. MR 593962, DOI 10.1112/blms/12.6.443 G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, New York, 1934.
- Hans P. Heinig, The Marcinkiewicz interpolation theorem extends to weighted spaces, Studia Math. 62 (1978), no. 2, 163–168. MR 499962, DOI 10.4064/sm-62-2-163-168
- S. G. Kreĭn, Ju. I. Petunin, and E. M. Semënov, Interpolyatsiya lineĭ nykh operatorov, “Nauka”, Moscow, 1978 (Russian). MR 506343
- Alois Kufner, Imbedding theorems for general Sobolev weight spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 23 (1969), 373–386. MR 253038
- G. G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math. 1 (1951), 411–429. MR 44740, DOI 10.2140/pjm.1951.1.411 S. Lojasiewicz, An introduction to the theory of real variable functions, PWN, Warsaw, 1973. (Polish)
- Lech Maligranda, A generalization of the Shimogaki theorem, Studia Math. 71 (1981/82), no. 1, 69–83. MR 651325, DOI 10.4064/sm-71-1-69-83
- Lech Maligranda, Generalized Hardy inequalities in rearrangement invariant spaces, J. Math. Pures Appl. (9) 59 (1980), no. 4, 405–415. MR 607047 —, Indices and interpolation, preprint.
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- E. A. Pavlov, A generalization of the Hardy inequality, Collection of articles on applications of functional analysis (Russian), Voronež. Tehnolog. Inst., Voronezh, 1975, pp. 109–114 (Russian). MR 0453947
- E. A. Pavlov, Some properties of the Hardy-Littlewood operator, Mat. Zametki 26 (1979), no. 6, 909–912, 973 (Russian). MR 567227 A. A. Sedaev, On Hardy’s operator in weighted ${L^p}$ spaces, Sb. Trudov Aspirantov Mat. Fak. Voroneż, Un-ta, Voronez̄: 1972, pp. 48-53. (Russian)
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 67-74
- MSC: Primary 46E30; Secondary 26D15, 46M35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691280-6
- MathSciNet review: 691280