Nonexistence of invariant measures
HTML articles powered by AMS MathViewer
- by David Promislow
- Proc. Amer. Math. Soc. 88 (1983), 89-92
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691283-1
- PDF | Request permission
Abstract:
Let $G$ be a group acting on a set $X$. Suppose that for some positive integer $r$, $G$ contains a free group $F$ of rank $> r$ and the intersection of any stabilizer with $F$ has rank $\leqslant r$. A graph theoretic approach is used to show that there is no invariant measure on $X$.References
- Charles A. Akemann, Operator algebras associated with Fuchsian groups, Houston J. Math. 7 (1981), no. 3, 295–301. MR 640971
- Claude Berge, Graphs and hypergraphs, North-Holland Mathematical Library, Vol. 6, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the French by Edward Minieka. MR 0357172
- J. Dixmier and E. C. Lance, Deux nouveaux facteurs de type $\textrm {II}_{1}$, Invent. Math. 7 (1969), 226–234 (French). MR 248535, DOI 10.1007/BF01404307
- Edward G. Effros, Property $\Gamma$ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486. MR 355626, DOI 10.1090/S0002-9939-1975-0355626-6
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Wilfried Imrich, Subgroup theorems and graphs, Combinatorial mathematics, V (Proc. Fifth Austral. Conf., Roy. Melbourne Inst. Tech., Melbourne, 1976) Lecture Notes in Math., Vol. 622, Springer, Berlin, 1977, pp. 1–27. MR 0463016 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- Joseph Max Rosenblatt, A generalization of Følner’s condition, Math. Scand. 33 (1973), 153–170. MR 333068, DOI 10.7146/math.scand.a-11481
- Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636. MR 610970, DOI 10.1090/S0002-9947-1981-0610970-7
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 89-92
- MSC: Primary 43A07; Secondary 28C10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691283-1
- MathSciNet review: 691283