Ideals of regular operators on $l^{2}$
HTML articles powered by AMS MathViewer
- by W. Arendt and A. R. Sourour
- Proc. Amer. Math. Soc. 88 (1983), 93-96
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691284-3
- PDF | Request permission
Abstract:
Let ${\mathcal {L}^r}$ be the Banach algebra (and Banach lattice) of all regular operators on ${l^{^2}}$, i.e. the algebra of all operators $A$ on ${l^2}$ which are given by a matrix $({a_{mn}})$ such that $(\left | {{a_{mn}}} \right |)$ defines a bounded operator $\left | A \right |$. We show that there exists exactly one nontrivial closed subspace of ${\mathcal {L}^r}$ which is both a lattice-ideal and an algebra-ideal of ${\mathcal {L}^r}$, namely the space ${\mathcal {K}^r} = \{ A \in {\mathcal {L}^r}:\left | A \right |{\text { is compact}}\}$. We also show that every nontrivial ideal in ${\mathcal {L}^r}$ is included in ${\mathcal {K}^r}$.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive compact operators on Banach lattices, Math. Z. 174 (1980), no. 3, 289–298. MR 593826, DOI 10.1007/BF01161416
- Wolfgang Arendt, On the $\textrm {o}$-spectrum of regular operators and the spectrum of measures, Math. Z. 178 (1981), no. 2, 271–287. MR 631633, DOI 10.1007/BF01262044
- P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (1979), no. 4, 287–320 (1980). MR 570888, DOI 10.1007/BF02760610
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 93-96
- MSC: Primary 47D30; Secondary 47B55
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691284-3
- MathSciNet review: 691284