Logics with given centers and state spaces
HTML articles powered by AMS MathViewer
- by Pavel Pták
- Proc. Amer. Math. Soc. 88 (1983), 106-109
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691287-9
- PDF | Request permission
Abstract:
Let $B$ be a Boolean algebra and let $K$ be a compact convex subset of a locally convex topological linear space. Then there exists a logic with the center Boolean isomorphic to $B$ and with the state space affinely homeomorphic to $K$.References
- J. Brabec and P. Pták, On compatibility in quantum logics, Found. Phys. 12 (1982), no. 2, 207–212. MR 659779, DOI 10.1007/BF00736849
- R. J. Greechie, Orthomodular lattices admitting no states, J. Combinatorial Theory Ser. A 10 (1971), 119–132. MR 274355, DOI 10.1016/0097-3165(71)90015-x
- Stanley P. Gudder, Uniqueness and existence properties of bounded observables, Pacific J. Math. 19 (1966), 81–93. MR 201146, DOI 10.2140/pjm.1966.19.81
- Stanley P. Gudder, Stochastic methods in quantum mechanics, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York-Oxford, 1979. MR 543489
- V. Maňasová and P. Pták, On states on the product of logics, Internat. J. Theoret. Phys. 20 (1981), no. 6, 451–456. MR 632598, DOI 10.1007/BF00671358
- Frederic W. Shultz, A characterization of state spaces of orthomodular lattices, J. Combinatorial Theory Ser. A 17 (1974), 317–328. MR 364042, DOI 10.1016/0097-3165(74)90096-x
- V. S. Varadarajan, Geometry of quantum theory. Vol. I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0471674
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 106-109
- MSC: Primary 06C15; Secondary 03G12, 81B10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691287-9
- MathSciNet review: 691287