Regular Riemannian $s$-manifolds of noncompact type
HTML articles powered by AMS MathViewer
- by Cristián U. Sánchez
- Proc. Amer. Math. Soc. 88 (1983), 110-112
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691288-0
- PDF | Request permission
Abstract:
In this note it is proven that a regular Riemannian $s$-manifold of noncompact type (see below) cannot be immersed isometrically and equivariantly in ${R^n}$.References
- Alfred Gray, Riemannian manifolds with geodesic symmetries of order $3$, J. Differential Geometry 7 (1972), 343–369. MR 331281
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Oldřich Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, vol. 805, Springer-Verlag, Berlin-New York, 1980. MR 579184, DOI 10.1007/BFb0103324
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
- Jorge Vargas, A symmetric space of noncompact type has no equivariant isometric immersions into the Euclidean space, Proc. Amer. Math. Soc. 81 (1981), no. 1, 149–150. MR 589158, DOI 10.1090/S0002-9939-1981-0589158-X
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 110-112
- MSC: Primary 53C35; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691288-0
- MathSciNet review: 691288