COMPLETE HYPERSURFACES WITH RS = 0 **IN** E^{n+1}

YOSHIO MATSUYAMA

ABSTRACT. A locally symmetric Riemannian manifold satisfies RR = 0 and in particular RS = 0. The purpose of this paper is to show that the conditions RR = 0 and RS = 0 are equivalent for complete hypersurfaces in E^{n+1} and to give by RS = 0 some characterizations of locally symmetric hypersurfaces in E^{n+1} .

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

$$(0.1) R(X,Y) \cdot R = 0$$

for any tangent vectors X and Y, where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. Nomizu [5] proved the following:

Let M be a connected and complete Riemannian n-manifold which is isometrically immersed in a Euclidean space E^{n+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies condition (0.1), then it is of the form $M = S^k \times E^{n-k}$, where S^k is a hypersurface in a Euclidean subspace E^{k+1} of E^{n+1} and E^{n-k} is a Euclidean subspace orthogonal to E^{k+1} .

Let S be the Ricci tensor of M. Then the condition (0.1) implies in particular

$$(0.2) R(X,Y) \cdot S = 0$$

for any tangent vectors X and Y. Then Tanno [8] showed the following results:

- (1) For hypersurfaces in E^{n+1} with the positive scalar curvature, the conditions (0.1) and (0.2) are equivalent. By using (1),
- (2) Let M be a connected and complete Riemannian n-manifold which is isometrically immersed in a Euclidean space E^{n+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies the condition (0.2) and has the positive scalar curvature, then it is of the form $M = S^k \times E^{n-k}$.

These were generalized by Ryan [7] in the case of hypersurfaces with the nonnegative scalar curvature or constant scalar curvature.

The purpose of this paper is to prove the following

THEOREM. For complete hypersurfaces in E^{n+1} , the conditions (0.1) and (0.2) are equivalent.

Received by the editors September 13, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 53B25, 53C40.

Key words and phrases. Hypersurfaces, curvature tensor, Ricci tensor, complete.

1. Lemmas. We shall assume that M is oriented and that the second fundamental form A has three distinct eigenvalues $\lambda(x)$, $\mu(x)$ and 0 which have constant multiplicities $p \ (\ge 2)$, $q \ (\ge 2)$ and $n - p - q \ (> 0)$, respectively. We define three distributions on M as follows:

$$T_{\lambda}(x) = \{ X \in T_{x}(M) \, | \, AX = \lambda(x)X \},$$

$$T_{\mu}(x) = \{ X \in T_{x}(M) \, | \, AX = \mu(x)X \},$$

$$T_{0}(x) = \{ X \in T_{x}(M) \, | \, AX = 0 \}.$$

We have $T_x(M) = T_{\lambda}(x) + T_{\mu}(x) + T_0(x)$ (direct sum). For any $Z \in T_x(M)$, Z_{λ} , Z_{μ} , Z_0 will denote the components of Z in $T_{\lambda}(x)$, $T_{\mu}(x)$ and $T_0(x)$, respectively. Then we can easily show the following [2,5]

LEMMA 1. T_{λ} , T_{μ} and T_{0} are differentiable and involutive.

From $p \ge 2$ (resp. $q \ge 2$) we have [5]

LEMMA 2. If X belongs to T_{λ} (resp. T_{μ}), then $X \cdot \lambda = 0$ (resp. $X \cdot \mu = 0$).

Now, let $X \in T_{\lambda}$, $Y \in T_0$ and computing both sides of the Codazzi equation, we get [2]

LEMMA 3. (i) If $X \in T_{\lambda}$ and $Y \in T_{0}$, then $(\nabla_{X}Y)_{\lambda} = -((Y \cdot \lambda)/\lambda)X$, where ∇ denotes the covariant differentiation for the Riemannian connection on M.

(ii) If
$$Y \in T_0$$
, then $\nabla_Y(T_0) \subset T_0$.

Similarly, we have [4]

LEMMA 4. If $X \in T_{\lambda}$ and $Y \in T_{\mu}$, then

$$(\nabla_X Y)_{\lambda} = -((Y \cdot \lambda)/(\lambda - \mu))X$$
 and $(\nabla_Y X)_{\mu} = ((X \cdot \mu)/(\lambda - \mu))Y$.

The following lemma is basic.

LEMMA 5 (CARTAN [1]). Let M be a hypersurface in a space $\tilde{M}^{n+1}(c)$ of constant curvature $c, c \leq 0$, whose principal curvatures are constant. Then at most two of them are distinct.

By Lemma 1, around each point x of M we can choose an orthonormal frame $\{X_1,\ldots,X_p,Y_{p+1},\ldots,Y_{p+q},Z_{p+q+1},\ldots,Z_n\}$ such that $\{X_1,\ldots,X_p\},\{Y_{p+1},\ldots,Y_{p+q}\}$ and $\{Z_{p+q+1},\ldots,Z_n\}$ are bases for the distributions T_λ , T_μ and T_0 respectively. Hereafter, we shall use indices a,b,c for the range $1,\ldots,p;i,j,k$ for $p+1,\ldots,p+q$ and r,s,t for $p+q+1,\ldots,n$. From the Codazzi equation we have

$$g((\nabla_X A)Y_i, Z_r) = g((\nabla_Y A)Z_r, X_a) = g((\nabla_Z A)X_a, Y_i),$$

i.e.,

$$(1.1) \mu g(\nabla_{X_n} Y_i, Z_r) = -\lambda g(\nabla_{Y_i} Z_r, X_a) = (\lambda - \mu) g(\nabla_{Z_r} X_a, Y_i),$$

for all a, i, r and, hence

$$(1.2) g(\nabla_{Y_i}Z_r, X_a)g(\nabla_{X_a}Y_i, Z_r) + g(\nabla_{X_a}Y_i, Z_r)g(\nabla_{Z_r}X_a, Y_i)$$
$$+g(\nabla_{Z_r}X_a, Y_i)g(\nabla_{Y_i}Z_r, X_a) = 0,$$

unless

$$g(\nabla_{Y_i}Z_r, X_a)g(\nabla_{X_a}Y_i, Z_r)g(\nabla_{Z_r}X_a, Y_i) = 0.$$

In terms of Lemma 3(ii) we get

$$g(\nabla_Z Z_r, X_a) = g(\nabla_Z Z_r, Y_i) = 0.$$

Now, we assume that $(p-1)\lambda + (q-1)\mu = 0$. Differentiating $(p-1)\lambda + (q-1)\mu = 0$ in each direction, we get

$$(1.3) g(\nabla_Y X_a, Y_i) = g(\nabla_Y Y_i, X_a) = 0,$$

and

$$(1.4) g(\nabla_Y X_a, Z_r) = g(\nabla_Y Y_i, Z_r)$$

for all a, i, r. Then (1.2), (1.3), Lemmas 3 and 4 give

$$(1.5) 0 = g(R(X_a, Z_r)Z_r, X_a)$$

$$= Z_r g(\nabla_{X_a} X_a, Z_r) - \sum_s g(\nabla_{Z_r} Z_r, Z_s) g(\nabla_{X_a} X_a, Z_s)$$

$$-g(\nabla_{X_a} X_a, Z_r)^2 - 2 \sum_s g(\nabla_{X_a} Y_i, Z_r) g(\nabla_{Z_r} X_a, Y_i),$$

$$(1.6) \quad \lambda \mu = g(R(X_a, Y_i)Y_i, X_a)$$

$$= -\sum_{r} g(\nabla_{X_a} X_a, Z_r) g(\nabla_{Y_i} Y_i, Z_r) - 2\sum_{r} g(\nabla_{X_a} Y_i, Z_r) g(\nabla_{Y_i} Z_r, X_a),$$

(1.7)
$$0 = g(R(X_a, Y_i)Y_j, X_a) = -2\sum_r g(\nabla_{X_a}Y_j, Z_r)g(\nabla_{Y_i}Z_r, X_a),$$

for $i \neq j$,

(1.8)
$$0 = g(R(X_a, Y_i)Y_i, X_b) = -2\sum_{r} g(\nabla_{Y_i} X_a, Z_r) g(\nabla_{X_b} Z_r, Y_i),$$

for $a \neq b$. Hence by a similar argument to Proposition 2.1 of [3] we obtain

LEMMA 6. If $(p-1)\lambda + (q-1)\mu = 0$ and M is complete, then $g(\nabla_{X_a}Y_i, Z_r) \neq 0$ for some a, i, r.

PROOF. Suppose $g(\nabla_{X_a}Y_i, Z_r) \equiv 0$ for all a, i, r. Since a leaf of \mathcal{K} of T_0 is totally geodesic and complete [2, 3], choosing Z_r as a unit tangent vector field along a geodesic L(s) of \mathcal{K} , we can write (1.5) as

$$(1.5)' Z_r g(\nabla_{X_a} X_a, Z_r) = g(\nabla_{X_a} X_a, Z_r)^2.$$

Note that we may assume $\lambda > 0$ and that

$$g(\nabla_{X_a}X_a, Z_r) = Z_r(\log \lambda)$$

is considered as a function on L(s). Hence $g(\nabla_{X_a}X_a, Z_r) \equiv 0$ or $g(\nabla_{X_a}X_a, Z_r) \equiv (s_0 - s)^{-1}$ for some constant s_0 . Combining Lemmas 2-5, (1.3) and (1.4), the former cannot occur. If the latter holds, then $g(\nabla_{X_a}X_a, Z_r)$ is not defined at $s = s_0$, which contradicts completeness.

From (1.7) and (1.8), we get $g((\nabla_{X_a}Y_i)_0, (\nabla_{X_a}Y_j)_0) = 0$ and $g((\nabla_{X_a}Y_i)_0, (\nabla_{X_b}Y_i)_0) = 0$ for $i \neq j$ and $a \neq b$, using (1.1). On the other hand, $|(\nabla_{X_a}Y_i)_0| = |(\nabla_{X_b}Y_j)_0|$ for

all a, i, b, j follows from (1.6). Let \mathcal{C}_a be the q-dimensional subspace of T_0 spanned by $(\nabla_{X_a}Y_i)_0$, $i=p+1,\ldots,p+q$, and \mathfrak{D}_i be the p-dimensional subspace of T_0 spanned by $(\nabla_{X_a}Y_i)_0$, $a=1,\ldots,p$, on an open subset $G=\{x\in M; \sum_r g(\nabla_{X_a}Y_i,Z_r)^2\neq 0 \text{ at } x\}$. Then we have [3]

LEMMA 7. Under the assumption of $(p-1)\lambda + (q-1)\mu = 0$, $\mathcal{C}_a = \mathfrak{D}_i$ for all a, i.

2. Proof of Theorem. Our conditions (0.1) and (0.2) reduce respectively to

(2.1)
$$\lambda_i \lambda_j \lambda_k (\lambda_i - \lambda_j) = 0$$

and

(2.2)
$$\lambda_i \lambda_i (\lambda_i - \lambda_i) (\operatorname{trace} A - \lambda_i - \lambda_i) = 0$$

[6,7]. Assume (2.2). If the type number $k(x) \le 2$ for any $x \in M$, then (2.1) is automatically satisfied. Hence we may suppose the type number ≥ 3 at some point, say, $0 \in M$. Let λ and μ be distinct nonzero principal curvatures at 0. If ν is a principal curvature distinct from λ and μ , we have

$$\nu(\operatorname{trace} A - \lambda - \nu) = 0$$
, $\nu(\operatorname{trace} A - \mu - \nu) = 0$.

Since $\lambda \neq \mu$ we must conclude that $\nu = 0$. But if this is true, then trace $A = \lambda + \mu$. On the other hand, trace $A = p\lambda + q\mu$, where p and q are the appropriate multiplicities. Thus, $(p-1)\lambda + (q-1)\mu = 0$ and p and q are greater than 1, since $k(0) \ge 3$.

If p + q = n > 2, the standard argument of [6] shows that λ and μ are constant near 0. Thus, $\lambda \mu = 0$, which implies a contradiction. Thus, at most two principal curvatures are distinct and (2.1) holds. Hence we may assume p + q < n.

Let $W = \{x \mid k(x) \ge 3\}$, which is an open set. Let W_0 be the connected component of 0 in W. By the above argument we see that either

- (2.3) A has only one eigenvalue λ ,
- (2.4) A has two distinct principal curvatures λ and 0, or
- (2.5) A has three distinct principal curvatures λ , μ and 0

holds at 0 and then on W_0 . If we assume (2.3) on W_0 , then W_0 is umbilic. Hence λ is constant on W_0 . Next, assume that (2.5) holds on W_0 . Then we know that k(x), p and q are constant on W_0 and $\lambda(x)$ and $\mu(x)$ are differentiable functions. Then, since $(p-1)\lambda + (q-1)\mu = 0$ holds, Lemmas 1-7 are valid. Moreover, by a similar argument to Proposition 2.1 of [3] we know that (2.5) cannot occur.

In fact, by Lemmas 6 and 7, we know p = q (=: p_0) $\leq n - p - q$. Let $\mathcal{C} = \mathcal{C}_a$. Since we have

$$0 = g(R(X_a, X_b)Y_j, X_a) = \sum_{r} g(\nabla_{X_b}Y_j, Z_r)g(\nabla_{X_a}Z_r, X_a),$$

 $(\nabla_X X_a)_0$ is orthogonal to \mathcal{C} , or

$$g(\nabla_X X_a, Z_a) = 0$$
, for $2p_0 + 1 \le \rho \le 3p_0$,

using a basis Z_{ρ} , $\rho=2\,p_0+1,\ldots,3\,p_0$ of \mathcal{C} . Suppose $n-p-q>p_0$ and \mathcal{E} is the orthogonal complement of \mathcal{C} in T_0 on G. Let Z_{σ} , $3p_0+1\leq\sigma\leq n$, be a basis of \mathcal{E} . Then from

$$0 = g(R(X_a, Z_\sigma)Z_\tau, Y_i) = \sum_{\rho} g(\nabla_{Z_\sigma}Z_\tau, Z_\rho)g(\nabla_{X_a}Z_\rho, Y_i),$$

for σ , $\tau \ge 3p_0 + 1$, we obtain

$$\tilde{\nabla}_{Z_{\sigma}}Z_{ au} = \sum_{\omega=3p_0+1}^n g(\nabla_{Z_{\sigma}}Z_{ au}, Z_{\omega})Z_{\omega},$$

where $\tilde{\nabla}$ denotes the covariant differentiation for the Riemannian connection on E^{n+1} . Thus \mathcal{E} is an involutive distribution on G whose leaf is totally geodesic. For $Z_{\sigma} \in \mathcal{E}$, let L(s) be the geodesic whose tangent vector is Z_{σ} . Note that L(s) can be extended completely even if $g(\nabla_{Y_i}Z_r, X_a) = 0$ at some point on it, since a leaf of T_0 is complete. Moreover

$$(1.5)'' Z_{\sigma}g(\nabla_X X_a, Z_{\sigma}) = g(\nabla_X X_a, Z_{\sigma})^2$$

holds for all $s \in E^1$ by (1.5). Then contradiction is shown in the same way as the proof of Lemma 6. Therefore we conclude $n - p - q = p_0$ and $g(\nabla_{X_a}X_a, Z_r) = 0$ for all r. Thus, by means of Lemma 5, (2.5) cannot occur.

Hence either (2.3) or (2.4) holds on W_0 . If (2.4) holds on W_0 , then the same argument as [5] shows λ is a constant function on W_0 . Now assume (2.3) (resp. (2.4)) holds on W_0 . We show that W_0 is actually equal to M. Suppose $W_0 \neq M$ and let x be a point of $\overline{W_0} - W_0$. By the continuity argument for the characteristic polynomial of A, we see that (2.3) (resp. (2.4)) holds at x. Thus W_0 is open and closed so that $W_0 = M$ and thus (2.1) is satisfied on M.

REFERENCES

- 1. E. Cartan, Sur quelques familles remarquables d'hypersurfaces, C. R. Cong. Math. Liege (1939), 30-41; Oeuvres complètes, Tome III, Vol. 2, p. 1481.
- 2. Y. Matsuyama, Hypersurfaces with RS = 0 in a Euclidean space, Bull. Fac. Sci. Engrg. Chuo Univ. 24 (1981), 13-19.
- 3. R. Miyaoka, Complete hypersurfaces in the space form with three principal curvatures, Math. Z. 179 (1982), 345-354.
- 4. R. Naka-Miyaoka, Minimal hypersurfaces in the space form with three principal curvatures, Math. Z. 170 (1980), 137-151.
- 5. K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968), 46-59.
- 6. P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969), 363-388.
 - 7. _____, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251-259.
- 8. S. Tanno, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J. 21 (1969), 297-303.

DEPARTMENT OF MATHEMATICS, CHUO UNIVERSITY, BUNKYO-KU, TOKYO, JAPAN