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COMPLETE HYPERSURFACES WITH RS = 0 IN E"+ '

YOSHIO MATSUYAMA

Abstract. A locally symmetric Riemannian manifold satisfies RR = 0 and in

particular RS = 0. The purpose of this paper is to show that the conditions RR = 0

and RS = 0 are equivalent for complete hypersurfaces in E"+l and to give by

RS = 0 some characterizations of locally symmetric hypersurfaces in E"+<.

If a Riemannian manifold M is locally symmetric, then its curvature tensor R

satisfies

(0.1) R(X,Y)R = 0

for any tangent vectors X and Y, where the endomorphism R(X, Y) operates on 7?

as a derivation of the tensor algebra at each point of M. Nomizu [5] proved the

following:

Let M be a connected and complete Riemannian n-manifold which is isometrically

immersed in a Euclidean space E"+[ so that the type number k(x) > 3 at least at one

point x. If M satisfies condition (0.1), then it is of the form M — Sk X E"~k, where Sk

is a hypersurface in a Euclidean subspace Ek + i of En+] and E"~k is a Euclidean

subspace orthogonal to Ek+].

Let 5 be the Ricci tensor of M. Then the condition (0.1) implies in particular

(0.2) R(X, Y)   S = 0

for any tangent vectors X and Y. Then Tanno [8] showed the following results:

(1) For hypersurfaces in En+] with the positive scalar curvature, the conditions (0.1)

and (0.2) are equivalent. By using (1),

(2) Let M be a connected and complete Riemannian n-manifold which is isometrically

immersed in a Euclidean space E"+] so that the type number k(x) > 3 at least at one

point x. If M satisfies the condition (0.2) and has the positive scalar curvature, then it is

of the form M = Sk X E"~k.

These were generalized by Ryan [7] in the case of hypersurfaces with the

nonnegative scalar curvature or constant scalar curvature.

The purpose of this paper is to prove the following

Theorem. For complete hypersurfaces in E"+\ the conditions (0.1) and (0.2) are

equivalent.

Received by the editors September 13, 1982.

1980 Mathematics Subject Classification. Primary 53B25, 53C40.

Key words and phrases. Hypersurfaces, curvature tensor, Ricci tensor, complete.

©1983 American Mathematical Society

OO02-9939/82/0OO0-0951 /S02.00

119



120 YOSHIO MATSUYAMA

1. Lemmas. We shall assume that M is oriented and that the second fundamental

form A has three distinct eigenvalues X(x), p(x) and 0 which have constant

multiplicities p (> 2), q (> 2) and « — p — q (> 0), respectively. We define three

distributions on M as follows:

Tx(x) = {XE Tx(M)\AX=\(x)X},

T^x) = {X E TX(M)\AX = p(x)X},

T0(x)= {XETx(M)\AX=0}.

We have TX(M) = Tx(x) + Tß(x) + T0(x) (direct sum). For any Z E TX(M), Zx,

Z^, Z0 will denote the components of Z in Tx(x), T^x) and T0(x), respectively.

Then we can easily show the following [2,5]

Lemma 1. Tx, T^ and T0 are differentiable and involutive.

From p > 2 (resp. q s* 2) we have [5]

Lemma 2. If Xbelongs to Tx (resp. T^), then X-\ = 0 (resp. X-p = 0).

Now, let X E Tx, Y E T0 and computing both sides of the Codazzi equation, we

get [2]

Lemma 3. (i) If X E Tx and Y E T0, then (VXY)X = -((Y-X)/X)X, where V

denotes the covariant differentiation for the Riemannian connection on M.

(ii) 7/ y G T0, then VY(T0) E T0.

Similarly, we have [4]

Lemma 4. If X E Tx and Y E 7¿, then

(vxY)x = -((Y-\)/(X-p))X   and   (vyI), = ((X-p)/ (A - p))Y.

The following lemma is basic.

Lemma 5 (Cartan [1]). Let M be a hypersurface in a space Mn + \c) of constant

curvature c, c < 0, whose principal curvatures are constant. Then at most two of them

are distinct.

By Lemma 1, around each point x of M we can choose an orthonormal frame

{Xx,...,Xp,Yp+x,...,Yp+q,Zp+q+x,...,Z„} suchthat {Xx,...,Xp},{Yp+x,...,Yp+q}

and {Z ++,,...,Z„} are bases for the distributions Tx, T^ and T0 respectively.

Hereafter, we shall use indices a, b, c for the range l,...,p; i, j, kîorp + \,...,p + q

and r, s, t for p + q + 1,...,«. From the Codazzi equation we have

g{{vxA)Y„ Zr) = g((vYA)Zr, Xa) = g{{vzA)Xa, Y,),

i.e.,

(1.1) Pg{vxY„ Zr) = -Ag(Vy,Zr, Xa) = (\- p)g{vzXa, Y),

for alla, i, r and, hence,

(1.2) g(vYZr, Xa)g{VxJn zr) + g{vxYt, zr)g{vzxa, y,)

+ g{vzXa,Yi)g(VyZr,Xa) = 0,
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unless

g(vYZr, Xa)g{vxYt, Zr)g(vzXa, Y]) = 0.

In terms of Lemma 3(ii) we get

s(vzzr,A;) = g(vzzr,y,) = o.

Now, we assume that (p — l)X + (q — l)p = 0. Differentiating (p — l)X +

(q — l)/i = 0 in each direction, we get

(1-3) g{vxXa,Yi)=g(vYY„Xa) = 0,

and

(1-4) g{vxXa,Zr)=g(vYYi,Zr)

for all a, i, r. Then (1.2), (1.3), Lemmas 3 and 4 give

(1.5) 0 = g(R(Xa,Zr)Zr,Xa)

= Zrg(vxXa, Zr) - 2g(vzz„ Zs)g(vxXa, Zs)
S

-g{vxxa, zr)2 - 22g(v^y;, zr)g{vzxa, y,),
i

(1.6) A.x = g(Ä(*a,y,.)y„A-J

= -2g(vxXa, Z^giVyY,, Zr)- 2^g(vxY„ Zr)g{vYZr, Xa),
r r

(1.7) 0 = g{R(Xa, YJYj, Xa) = -22g(vxYj, Zr)g{vYZr, Xa),
r

for/ ¥-j,

(1.8) 0 = g(7?(A;, Y,)Y„ Xb) = -22g{vYXa, Zr)g(vxZr, Yt),
r

for a ¥= b. Hence by a similar argument to Proposition 2.1 of [3] we obtain

Lemma 6. If (p — l)X + (q — l)/x = 0 and M is complete, then g(vxY¡, Zr) ^ 0

for some a, i, r.

Proof. Suppose g(Vx Y¡, Zr) = 0 for all a, i, r. Since a leaf of % of T0 is totally

geodesic and complete [2,3], choosing Zr as a unit tangent vector field along a

geodesic L(s) of %, we can write (1.5) as

(1-5)' Zrg{vxXa, Zr) = g(vxXa, Zr)\

Note that we may assume X > 0 and that

g(vxXa, Zr) = Zr(log\)

is considered as a function on L(s). Hence g(VxXa, Zr) =0 or g(vxXa, Zr) =

(s0 — s)"1 for some constant s0. Combining Lemmas 2-5, (1.3) and (1.4), the former

cannot occur. If the latter holds, then g(vxXa, Zr) is not defined at s = s0, which

contradicts completeness.

From (1.7) and (1.8), we get g((V^y,)o, (VxYj)0) = 0 and g((V^y,)0, (V^)0)

= 0 for i ¥*j and a ¥= b, using (1.1). On the other hand, | ( VXY¡)0 \ = | ( VxYj)0 \ for
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all a, i, b, j follows from (1.6). Let Qa be the «/-dimensional subspace of T0 spanned

°y (V*- Y¡)0, i—p+ l,...,p + q, and 6ii be the /»-dimensional subspace of T0

spanned by (VX¡¡Y¡)0, a — \,...,p, on an open subset G = [x E M; 1rg(VxY¡, Zr)2

¥= 0 at x}. Then we have [3]

Lemma 7. Under the assumption of (p — \)X + (q — \)p = 0, Qa — fyt for all a, i.

2. Proof of Theorem. Our conditions (0.1) and (0.2) reduce respectively to

(2.1) X,XJXk(X,-XJ) = 0

and

(2.2) X,Xj(Xi - Xy)(traoe^ - X, - Xj) = 0

[6,7]. Assume (2.2). If the type number k(x) < 2 for any x E M, then (2.1) is

automatically satisfied. Hence we may suppose the type number > 3 at some point,

say, OEM. Let X and p be distinct nonzero principal curvatures at 0. If v is a

principal curvature distinct from X and p, we have

v(traczA — X — v) = 0,   »»(traced — p. — v) — 0.

Since A ¥= p we must conclude that p = 0. But if this is true, then trace A = X + ft,.

On the other hand, trace A — pX + qp, where p and q are the appropriate multiplici-

ties. Thus, (p — \)X + (q — l)jtt = 0 and/7 and q are greater than 1, since k(0) > 3.

If p + q — n > 2, the standard argument of [6] shows that X and ju. are constant

near 0. Thus, Xp — 0, which implies a contradiction. Thus, at most two principal

curvatures are distinct and (2.1) holds. Hence we may assumep + q < n.

Let W = {x | k(x) s* 3}, which is an open set. Let W0 be the connected compo-

nent of 0 in W. By the above argument we see that either

(2.3) A has only one eigenvalue X,

(2.4) A has two distinct principal curvatures X and 0, or

(2.5) A has three distinct principal curvatures X, p and 0

holds at 0 and then on W0. If we assume (2.3) on W0, then W0 is umbilic. Hence X is

constant on W0. Next, assume that (2.5) holds on W0. Then we know that k(x), p

and q are constant on W0 and X(x) and p(x) are differentiable functions. Then,

since (p — \)X + (q — l)p = 0 holds, Lemmas 1-7 are valid. Moreover, by a

similar argument to Proposition 2.1 of [3] we know that (2.5) cannot occur.

In fact, by Lemmas 6 and 7, we know p = q ( = : p0) < « — p — q. Let Q — Qa.

Since we have

0 = g(R(Xa, X^Yj, Xa) = ^g{vxYj, Zr)g[yxZr, Xa),
r

(Vx Xa)0 is orthogonal to Q, or

g(vxXa, Z„) = 0,    for 2p0 + 1 ^ p < 3p0,

using a basis Zp, p = 2/?0 + 1,..., 3p0 of (2. Suppose n — p — q > p0 and S is the

orthogonal complement of 6 in T0 on G. Let ZCT, 3/?0 + 1 < a < «, be a basis of S.

Then from

o = g(7?(*a, za)zT, y,) = 2s(vzzT, zp)g(v^zp, yj,
p
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for a, t > 3p0 + 1, we obtain

n

vzzT =    2    g(vzzT,zJzu,
u = 3p0+ 1

where v denotes the covariant differentiation for the Riemannian connection on

E"+l. Thus S is an involutive distribution on G whose leaf is totally geodesic. For

Z„ G S, let L(s) be the geodesic whose tangent vector is Z0. Note that L(s) can be

extended completely even if g(vyZr, Xa) = 0 at some point on it, since a leaf of T0

is complete. Moreover

(1-5)" Zog(vxXa, Z0) = g{vxXa, Zaf

holds for all 5 G £■' by (1.5). Then contradiction is shown in the same way as the

proof of Lemma 6. Therefore we conclude « — p — q = pQ and g(Vx Xa, Zr) — 0 for

all r. Thus, by means of Lemma 5, (2.5) cannot occur.

Hence either (2.3) or (2.4) holds on W0. If (2.4) holds on W0, then the same

argument as [5] shows X is a constant function on W0. Now assume (2.3) (resp. (2.4))

holds on W0. We show that W0 is actually equal to M. Suppose W0=£ M and let x be

a point of W0 — W0. By the continuity argument for the characteristic polynomial of

A, we see that (2.3) (resp. (2.4)) holds at x. Thus W0 is open and closed so that

W0 = M and thus (2.1) is satisfied on M.
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