A CORRECTION NOTE ON "GENERALIZED HEWITT-SAVAGE THEOREMS FOR STRICTLY STATIONARY PROCESSES"

JOSÉ LUIS PALACIOS

ABSTRACT. Conditions on the distribution of a process $\{X_n, n \in I\}$ are given under which the invariant, tail and exchangeable σ -fields coincide; the index set I is either the positive integers or all the integers. The results proven here correct similar statements given in [3].

1. Let $\{X_n, n \in I\}$ be a sequence of real-valued r.v.'s on the probability space $(\Re^{\infty}, \Re^{\infty}, P)$, let \mathcal{G}, \mathcal{T} , and \mathcal{E} be the invariant, tail, and exchangeable σ -fields (see [3] for definitions and terminology), and consider the case where I is the set of positive integers J.

It is well known (see [2, p. 39; or 4]) that without reference to the probability P, the following strict inclusions always hold:

$$\mathfrak{I} \subset \mathfrak{T} \subset \mathfrak{E}.$$

Hence, for any probability P:

$$\mathfrak{G} \subset \mathfrak{I} \subset \mathfrak{G}(P).$$

Looking at (1) and (2) one can see that Theorem 1 in [3] is erroneous. The inaccuracies in [3] stem from not considering separately the case where I is J, the positive integers, and the case where I is Z, the integers.

2. Z setup. In this case one can define \S and \S as before mutatis mutandis (now T is onto as well as 1-1, and the permutations move around a finite number of possibly negative and positive coordinates); there are, however, several σ -fields that could merit being called "tail σ -field". (For a discussion of these σ -fields, and many more things related to this note and to [1], see [4].) We will be satisfied here considering \S to be $\bigcap_{n=1}^{\infty} \sigma(X_i, |i| \ge n)$, where $\sigma(X_i, i \in I)$ denotes the σ -field generated by the variables X_i , $i \in I$.

In this setup it is known that

$$\mathfrak{I}\subset \mathfrak{E}.$$

The inclusion is strict and no other inclusion is valid among \mathcal{G} , \mathcal{G} , \mathcal{G} in this setup (see [4]). From (3) it is obvious that for any probability P:

$$\mathfrak{I} \subset \mathfrak{E}(P).$$

Received by the editors May 8, 1981 and, in revised form, August 19, 1982. 1980 *Mathematics Subject Classification*. Primary 60G99; Secondary 60J10. *Key words and phrases*. Invariant, tail, exchangeable events and σ -fields.

3. Now we will give conditions under which the inclusions (2) and (4) can be reversed.

Let $T_n \in \Sigma$ be defined in the J setup by: $(T_n\omega)_k = (\omega)_k$ for $k \ge n+1$; $(T_n\omega)_k = (\omega)_{k+1}$, $1 \le k \le n-1$; $(T_n\omega) = (\omega)_1$. And in the Z setup by: $(T_n\omega)_k = (\omega)_k$ for $|k| \ge n+1$; $(T_n\omega)_k = (\omega)_{k+1}$, $|k| \le n-1$; $(T_n\omega)_n = (\omega)_{-n}$; $(T_n\omega)_{-n} = (\omega)_n$.

It is easily seen that $T_n^{-1}C = T^{-1}C$ for every cylinder $C \in \sigma(X_1, \dots, X_{n-1})$ in the J setup and for every cylinder $C \in \sigma(X_i, |i| \le n-1)$ in the Z setup.

Let $P \circ T^{-n}$, P_n be the measures on \mathfrak{B}^{∞} defined by $(P \circ T^{-n})A = P(T^{-n}A)$ and $P_n(A) = P(T_n^{-1}A)$ for n = 1, 2, ...

Let ≪ denote absolutely continuity of measures.

THEOREM 1. In the J setup, if
$$P \circ T^{-1} \ll P$$
 and $P_n \ll P$ uniformly in n, then $\mathfrak{G} = \mathfrak{T} = \mathfrak{E}(P)$.

PROOF. It is enough to prove $\mathcal{E} \subset \mathcal{G}(P)$. Let $A \in \mathcal{E}$ and let C be a cylinder in $\sigma(X_1, \ldots, X_{n-1})$ for n to be determined later. We have

$$P(A\Delta T^{-1}A) = P(A\Delta T_n^{-1}C) + P(T_n^{-1}C\Delta T^{-1}A) = P(T_n^{-1}A\Delta T_n^{-1}C) + P(T^{-1}C\Delta T^{-1}A)$$

= $P(T_n^{-1}(A\Delta C)) + P(T^{-1}(A\Delta C)).$

Let $\varepsilon > 0$ be arbitrary. Find δ (independent of n) such that $P(G) < \delta$ implies $P(T_n^{-1}G) < \varepsilon/2$ and $P(T^{-1}G) < \varepsilon/2$.

Then
$$P(A\Delta T^{-1}A) < \varepsilon$$
. Hence $P(A\Delta T^{-1}A) = 0$, i.e., $A = T^{-1}A(P)$.

THEOREM 2. In the Z setup, if $P \circ T^{-n} \ll P$ and $P_n \ll P$ both uniformly in n, then $\mathcal{G} = \mathcal{G} = \mathcal{G}(P)$.

PROOF. It suffices to prove (i) $\mathcal{E} \subset \mathcal{G}(P)$ and (ii) $\mathcal{G} \subset \mathcal{G}(P)$. The proof of (i) is the same as in Theorem 1 mutatis mutandis. For (ii), let $A \in \mathcal{G}$ and $\varepsilon > 0$ be arbitrary. Find δ such that $P(T^{-n}B) < \varepsilon$ for all n whenever $P(B) < \delta$ and a cylinder $C \in \sigma(X_i, |i| \le m)$ such that $P(A\Delta C) < \delta$. Then $P(A\Delta T^{-m}C) + P(T^{-m}(A\Delta C)) < \varepsilon$ and hence $P(A\Delta T^{-m}C) = 0$. Consider $D = T^{-m}C$. $T^{-n}D \in \sigma(X_i, |i| \ge n)$. Take $E = \limsup T^{-n}D$. Then $E \in \mathcal{G}$ and $P(A\Delta E) = 0$. This finishes the proof.

4. In proving Theorems 1 and 2 we have not used the assumption in [3]:

(5) for each
$$\sigma \in \Sigma$$
, $P(\sigma^{-1}A) = 0$ when $P(A) = 0$.

An example is given there, where supposedly

(6)
$$\mathcal{E} \subset \mathcal{G} \subset \mathfrak{I}(P) \text{ but } \mathcal{E} = \mathcal{G} = \mathfrak{I}(P) \text{ does not hold}$$

because (5) is not fulfilled.

The example is the following: consider the probability measure P determined by assigning probability 1/2 to each of the sequences (1,0,1,0,...) and (0,1,0,1,...). To see that (6) is incorrect, think of P as a two-state homogeneous Markov chain with (stationary) initial distribution $\pi(0) = \pi(1) = 1/2$, and transition probabilities $p_{00} = p_{11} = 0$, $p_{01} = p_{10} = 1$. Clearly this chain has one ergodic class $\{0,1\}$ and two periodic classes $\{0\}$ and $\{1\}$ of states.

In [1], Blackwell and Freedman (see also Freedman [2]) characterize \mathcal{G} , \mathcal{G} and \mathcal{E} when X_n is a homogeneous recurrent countable Markov chain. Applying those

results in our case (regardless of the value of $\pi(0)$ and $\pi(1)$ insofar as $0 < \pi(0) < 1$) it is plain to see that $\mathcal{G} = \text{trivial}(P)$, whereas $\mathfrak{T} = \mathcal{E}(P) = \text{the } \sigma$ -field generated by the two one-point atoms $\{(1,0,1,0,\ldots)\}$ and $\{(0,1,0,1,\ldots)\}$, so $\mathcal{G} \subseteq \mathfrak{T} = \mathcal{E}(P)$ and (6) is invalid.

Note that this Markov chain, though strictly stationary, does not satisfy the hypothesis $P_n \ll P$ required in Theorem 1 of [3] because the set $\{\omega\} = \{(1,0,1,0,\ldots,1,0,\underline{0},1,0,1,0,\ldots)\}$ (where _ denotes the *n*th position) has *P*-measure 0, but since $T_n^{-1}\omega = (0,1,0,1,0,\ldots)$, $\{\omega\}$ has $P \circ T_n^{-1}$ -measure 1/2.

5. Using this characterization of $\mathfrak{G}, \mathfrak{T}, \mathfrak{E}$ for the Markov chain case, we can detect an error in the proof of Theorem 2 in [3], where it is claimed that if f is the indicator of an \mathfrak{E} -set, then Tf is also in \mathfrak{E} , i.e., if A is exchangeable, $T^{-1}A$ is exchangeable. To see that this is not the case, even modulo P, where P is a probability under which X_n is strictly stationary, consider the example of [2, p. 46]: a Markov chain $\{X_n, n \ge 1\}$ with three states, whose nonzero transition probabilities are $p_{12} = p_{23} = 1$, $p_{31} = p_{32} = 1/2$. \mathfrak{E} is nontrivial, in fact its P-atoms are $\{X_1 = 3\}$ and $\{X_1 \in \{1,2\}\}$, and $T^{-1}\{X_1 = 3\} = \{X_1 = 2\}(P)$, and this latter set does not belong to \mathfrak{E} .

REFERENCES

- 1. D. Blackwell and D. Freedman, The tail σ -field of a Markov chain and a theorem of Orey, Ann. of Math. Stat. 35 (1964), 1291–1295.
 - 2. D. Freedman, Markov chains, Holden-Day, San Francisco, Calif., 1971.
- 3. R. Isaac, Generalized Hewitt-Savage theorems for strictly stationary processes, Proc. Amer. Math. Soc. 63 (1977), 313-316.
- 4. R. Olshen, The coincidence of measure algebras under an exchangeable probability, Z. Wahrsch. Verw. Gebiete 18 (1971), 153-158.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA-BERKELEY, BERKELEY, CALIFORNIA 94720

Current address: Universidad Simón Bolívar, Departamento de Matemáticas, Apartado Postal 80659, Caracas, Venezuela