Nonincrease almost everywhere of certain measurable functions with applications to stochastic processes
HTML articles powered by AMS MathViewer
- by Simeon M. Berman
- Proc. Amer. Math. Soc. 88 (1983), 141-144
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691295-8
- PDF | Request permission
Abstract:
Let $x(t)$, $0 \leqslant t \leqslant 1$, be a real valued measurable function having a local time ${\alpha _{[0,t]}}(x)$, $0 \leqslant t \leqslant 1$. If the latter is continuous in $t$ for almost all $x$, then almost every $t$ is not a point of increase of the function $x( \cdot )$.References
- Simeon M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), 1260–1272. MR 272035, DOI 10.1214/aoms/1177696901
- Simeon M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), 63–86. MR 307320
- A. Dvoretzky, P. Erdős, and S. Kakutani, Nonincrease everywhere of the Brownian motion process, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 103–116. MR 0132608
- Donald Geman, A note on the continuity of local times, Proc. Amer. Math. Soc. 57 (1976), no. 2, 321–326. MR 420812, DOI 10.1090/S0002-9939-1976-0420812-4
- Donald Geman and Joseph Horowitz, Occupation densities, Ann. Probab. 8 (1980), no. 1, 1–67. MR 556414
- Daniel Ray, Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615–630. MR 156383
- H. F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425–433. MR 96311
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 141-144
- MSC: Primary 60G17; Secondary 60J55
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691295-8
- MathSciNet review: 691295