
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 88, Number 1, May 1983

UNIFORM CONVERGENCE OF DISTRIBUTION FUNCTIONS

BENNETT EISENBERG AND GAN SHIXIN

Abstract. Necessary and sufficient conditions are given for uniform convergence of

probability distribution functions.

Weak convergence is the standard mode of convergence used for probability

distribution functions. This is due partly to the Levy continuity theorem, which

connects the weak convergence of distributions to the pointwise convergence of their

characteristic functions. Nevertheless, there are advantages in knowing distributions

converge uniformly.

In this paper we clarify the relation between weak and uniform convergence and

show that uniform convergence can also be characterized in terms of a mode of

convergence of characteristic functions.

Let Fn and F denote right continuous probability distribution functions, pn and p

the corresponding measures, and <bn and <f> the corresponding characteristic functions.
w

Weak convergence of Fn to F is denoted F„ -> F and indicates that Fn(t) -» F(t) at

w

continuity points t of F. It is well known (see [1, p. 260]) that if Fn — F and

pn({xY) -* p({x}) for each x, then Fn(x) -» F(x) uniformly in x.

Levy's continuity theorem states that weak convergence of probability distribution

functions Fn to F is equivalent to pointwise convergence of their characteristic

functions <i>„ to </>. In order to characterize uniform convergence of probability

distribution functions in terms of the convergence of characteristic functions we

introduce a norm on those functions / such that lim7._0O(l/27')/_^.|/(i) |2 dt exists.

This limit is denoted II / II2.

Lemma. || fe"x dv(x)\\2 exists for finite real measures v and equals 2 | v([x\) |2.

This is a simple extension of Wiener's formula.

Theorem. The following are equivalent:

(Y)Fn -» F uniformly,

(2) Fn " F and 21 p„({x)) - p({x}) |2 - 0,

(3) <j>„(t) - HO for all t and H„ - <b\\ ̂ 0.

Proof. (1) <=> (2) is straightforward.

(2) » (3) by the Levy continuity theorem and the lemma.    □

Dyson's theorem [2; 3, p. 349] is a simple corollary.
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Corollary. If <bn(t) ̂ > <¡>(t) uniformly in t then Fn(x) -» F(x) uniformly in x.

Kawata [3, p. 352] states that the converse of Dyson's theorem is also true. But this

is false.

Let pn be the uniform distribution on {0, l/«,2/«,...,(« — 1)/«} and p he

uniform on [0,1]. Then Fn -> F uniformly, but <£„(/) is periodic so lim sup <bn(t) = 1

while limcp(i) = 0. Thus sup, | c&„(?) - <b(t) \> 1 for all ».
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