The Lévy-Lindeberg central limit theorem in $L_{p}$, $0<p<1$
HTML articles powered by AMS MathViewer
- by Evarist Giné
- Proc. Amer. Math. Soc. 88 (1983), 147-153
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691297-1
- PDF | Request permission
Abstract:
A ${L_p}(T,\Sigma ,\mu )$-valued r.v. $X$, $0 < p < 1$, satisfies the Lévy-Lindeberg central limit theorem if and only if it is centered and pregaussian, that is, if and only if $\int \limits _T {{{(E{X^2}(t))}^{p/2}}d\mu (t) < \infty }$ $EX(t) = 0$-a.e. and $\mu$.References
- Aloisio Araujo and Evarist Giné, The central limit theorem for real and Banach valued random variables, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 576407
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- T. Byczkowski, Gaussian measures on $L_{p}$ spaces, $0\leq p<\infty$, Studia Math. 59 (1976/77), no. 3, 249–261. MR 448471
- Evarist Giné, V. Mandrekar, and Joel Zinn, On sums of independent random variables with values in $L_{p}$ $(2\leq p<\infty )$, Probability in Banach spaces, II (Proc. Second Internat. Conf., Oberwolfach, 1978) Lecture Notes in Math., vol. 709, Springer, Berlin, 1979, pp. 111–124. MR 537697
- Evarist Giné and Joel Zinn, Central limit theorems and weak laws of large numbers in certain Banach spaces, Z. Wahrsch. Verw. Gebiete 62 (1983), no. 3, 323–354. MR 688642, DOI 10.1007/BF00535258 G. Pisier, Le théorème limite central et la loi du logarithme iteré dans les espaces de Banach, Séminaire Maurey-Schwartz (1975-76), Exp. III et IV, 1975. N. Dunford and J. T. Schwartz, Linear operators. I, Wiley, New York, 1958.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 147-153
- MSC: Primary 60B12; Secondary 60F05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691297-1
- MathSciNet review: 691297