The finite dimensionality of integral homology $3$-manifolds
HTML articles powered by AMS MathViewer
- by John J. Walsh
- Proc. Amer. Math. Soc. 88 (1983), 154-156
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691298-3
- PDF | Request permission
Abstract:
This note establishes that an integral homology $3$-manifold has covering dimension equal to three.References
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- Glen E. Bredon, Wilder manifolds are locally orientable, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 1079–1081. MR 286109, DOI 10.1073/pnas.63.4.1079
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- George Kozlowski and John J. Walsh, Cell-like mappings on $3$-manifolds, Topology 22 (1983), no. 2, 147–151. MR 683754, DOI 10.1016/0040-9383(83)90025-3
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8
- D. R. McMillan Jr., Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942–964. MR 270380, DOI 10.1090/S0002-9904-1970-12510-1 J. Nagata, Modern dimension theory, Interscience, New York, 1965.
- John J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 105–118. MR 643526
- R. L. Wilder, Monotone mappings of manifolds. II, Michigan Math. J. 5 (1958), 19–23. MR 97798
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 154-156
- MSC: Primary 57N10; Secondary 54F45, 55M10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691298-3
- MathSciNet review: 691298