On the existence of equivariant embeddings of principal bundles into vector bundles
HTML articles powered by AMS MathViewer
- by Vagn Lundsgaard Hansen and Jesper Michael Møller
- Proc. Amer. Math. Soc. 88 (1983), 157-161
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691299-5
- PDF | Request permission
Abstract:
Let $G$ be a finite group and let $X$ be, say, a connected CW-complex of dimension $k \geqslant 1$. Let $\pi :E \to X$ be a principal $G$-bundle and $p:V \to X$ an $m$-dimensional $G$-vector-bundle with trivial action of $G$ on $X$. By an equivariant embedding of $\pi$ into $p$ we understand an equivariant embedding $h:E \to V$ commuting with projections. We prove a general embedding theorem, a main special case of which is the following Theorem. If $k < m$ and if the action of $G$ on $V$ is free outside the zero section for $p$, then any principal $G$-bundle $\pi :E \to X$ can be embedded equivariantly into $p:V \to X$.References
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- P. F. Duvall and L. S. Husch, Embedding finite covering spaces into bundles, Topology Proc. 4 (1979), no. 2, 361–370 (1980). MR 598280
- Karsten Grove, Center of mass and $G$-local triviality of $G$-bundles, Proc. Amer. Math. Soc. 54 (1976), 352–354. MR 394712, DOI 10.1090/S0002-9939-1976-0394712-2
- Vagn Lundsgaard Hansen, Embedding finite covering spaces into trivial bundles, Math. Ann. 236 (1978), no. 3, 239–243. MR 494121, DOI 10.1007/BF01351369 D. Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Math., vol. 20, Springer-Verlag, Berlin and New York, 1966.
- K. J. Prevot, Imbedding smooth involutions in trivial bundles, Pacific J. Math. 89 (1980), no. 1, 163–168. MR 596927
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 157-161
- MSC: Primary 57M12; Secondary 55R25, 57Q35, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691299-5
- MathSciNet review: 691299