Characterizations of $\mathcal {F}$-fibrations
HTML articles powered by AMS MathViewer
- by C. Morgan
- Proc. Amer. Math. Soc. 88 (1983), 169-172
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691302-2
- PDF | Request permission
Abstract:
We obtain a reformulation of May’s notion of an "$\mathcal {F}$-fibration" and use it to sharpen results of Booth, Heath and Piccinini on the characterization of universal $\mathcal {F}$-fibrations.References
- Peter I. Booth, Philip R. Heath, and Renzo A. Piccinini, Characterizing universal fibrations, Algebraic topology (Proc. Conf., Univ. British Columbia, Vancouver, B.C., 1977) Lecture Notes in Math., vol. 673, Springer, Berlin, 1978, pp. 168–184. MR 517091
- Peter I. Booth, Philip R. Heath, and Renzo A. Piccinini, Fibre preserving maps and functional spaces, Algebraic topology (Proc. Conf., Univ. British Columbia, Vancouver, B.C., 1977) Lecture Notes in Math., vol. 673, Springer, Berlin, 1978, pp. 158–167. MR 517090
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 169-172
- MSC: Primary 55R05; Secondary 55R65
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691302-2
- MathSciNet review: 691302