On fibre inclusions and Kähler manifolds
HTML articles powered by AMS MathViewer
- by Willi Meier
- Proc. Amer. Math. Soc. 88 (1983), 173-176
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691303-4
- PDF | Request permission
Abstract:
A map $i:X \to Y$ of ${\text {CW}}$-complexes is said to be equivalent to a fibre inclusion if there exists a fibration (up to homotopy) $X \to Y \to B$. Here some classes of maps of compact Kähler manifolds are presented which are not equivalent to a fibre inclusion.References
- Paul F. Baum, On the cohomology of homogeneous spaces, Topology 7 (1968), 15–38. MR 219085, DOI 10.1016/0040-9383(86)90012-1
- T. Ganea, Induced fibrations and cofibrations, Trans. Amer. Math. Soc. 127 (1967), 442–459. MR 210131, DOI 10.1090/S0002-9947-1967-0210131-2
- Henry Glover and Bill Homer, Endomorphisms of the cohomology ring of finite Grassmann manifolds, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 170–193. MR 513548
- Daniel Henry Gottlieb, Witnesses, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1974/75), 825–836. MR 377874, DOI 10.1512/iumj.1975.24.24065
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8
- Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224. MR 515558, DOI 10.1090/S0002-9947-1978-0515558-4
- P. J. Hilton, On excision and principal fibrations, Comment. Math. Helv. 35 (1961), 77–84. MR 164350, DOI 10.1007/BF02567007
- W. S. Massey, Some problems in algebraic topology and the theory of fibre bundles, Ann. of Math. (2) 62 (1955), 327–359. MR 74828, DOI 10.2307/1970068
- Jean-Pierre Meyer, Principal fibrations, Trans. Amer. Math. Soc. 107 (1963), 177–185. MR 146843, DOI 10.1090/S0002-9947-1963-0146843-5
- Reinhard Schultz, Compact fiberings of homogeneous spaces. I, Compositio Math. 43 (1981), no. 2, 181–215. MR 622447
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 173-176
- MSC: Primary 55R05; Secondary 55P62
- DOI: https://doi.org/10.1090/S0002-9939-1983-0691303-4
- MathSciNet review: 691303