A transcendence measure for some special values of elliptic functions
HTML articles powered by AMS MathViewer
- by Robert Tubbs PDF
- Proc. Amer. Math. Soc. 88 (1983), 189-196 Request permission
Abstract:
Among T. Schneider’s results is the following: Let $\wp (z)$ be the Weierstrass elliptic function with algebraic invariants. If $\wp (u)$ and $\beta$ are both algebraic, $\beta \notin {K_\tau }$, then $\wp (\beta u)$ is transcendental. In this paper we provide a transcendence measure for this value. Let $P(X)$ be a nonzero polynomial, with integral coefficients, of degree $d$ and height $h$, and put $t = d + \log h$. Then there is an effectively computable constant $C$, which does not depend on $P(X)$. such that: (A) If $\wp (z)$ has complex multiplication then $\log \left | {P(\wp (\beta u))} \right | > - C{d^2}{t^2}{(\log t)^4}$. (B) If $\wp (z)$ does not have complex multiplication then $\log \left | {P(\wp (\beta u))} \right | > - C{d^6}{t^2}{(\log t)^{14}}$.References
- W. D. Brownawell and D. W. Masser, Multiplicity estimates for analytic functions. I, J. Reine Angew. Math. 314 (1980), 200–216. MR 555914, DOI 10.1515/crll.1980.314.200
- A. O. Gel′fond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960. Translated from the first Russian edition by Leo F. Boron. MR 0111736
- Serge Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0214547
- David William Masser, Transcendence and abelian functions, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Astérisque, Nos. 24-25, Soc. Math. France, Paris, 1975, pp. 177–182. MR 0371828
- Michel Waldschmidt, Transcendence methods, Queen’s Papers in Pure and Applied Mathematics, vol. 52, Queen’s University, Kingston, Ont., 1979. MR 633068
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 189-196
- MSC: Primary 11J82; Secondary 11J89
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695238-2
- MathSciNet review: 695238