THE CARTAN MATRIX OF A GROUP ALGEBRA
MODULO ANY POWER OF ITS RADICAL

PETER LANDROCK

Abstract. We prove that the Cartan matrix of a group algebra \(F[G] \) modulo any power of its radical \(J \) is dual symmetric, provided \(F \) is a splitting field of \(F[G]/J \). This eases the process of determining the Loewy series of the projective indecomposable \(F[G] \)-modules.

Let \(G \) be any finite group and \(F \) a field of characteristic \(p \). By a module of the group algebra \(F[G] \), we will always mean a right module. Let \(S_1, S_2, \ldots, S_k \) be a complete set of representatives of the isomorphism classes of simple \(F[G] \)-modules, and let \(P_i \) be the projective cover of \(S_i \). For any \(F[G] \)-module \(M \), we let \(M^* \) denote the dual \(F[G] \)-module of \(M \). The dual of \(S_i \) is denoted by \(S_i^* \), as well. Thus \(P_i^* = P_i \), as \(F[G] \) is symmetric. In fact we will only use this fundamental property of a group algebra in the following. Consequently, similar results hold for symmetric algebras rather than just group algebras.

In the following we set \(A = F[G] \) and denote its radical by \(J \). As usual, the Loewy length of an \(A \)-module \(M \) is the minimal number \(r \) for which \(MJ^r = 0 \). Observe that \(M \) and \(M^* \) always have the same Loewy length, as \(M = M^{**} \).

From now on we must assume \(F \) is a splitting field.

Now let \(I \) be any power of \(J \) and set \(\tilde{A} = A/I, \tilde{P_i} = P_i/P_i I \). As \(S_i I = 0 \) for all \(i \), \(\{ S_1, S_2, \ldots, S_k \} \) is also a complete set of representatives of isomorphism classes of simple \(\tilde{A} \)-modules of the Artinian algebra \(\tilde{A} \). Recall that the Cartan matrix \(\{ c_{ij} \} \) of \(\tilde{A} \) is defined as follows: \(c_{ij} \) equals the multiplicity of \(S_j \) as a composition factor of \(\tilde{P_i} \), which conveniently equals \(\dim(\text{Hom}_A(\tilde{P_i}, \tilde{P_j})) \) (see [1]). It is also well known that the Cartan matrix of \(A \) is symmetric. The aim of this note is to prove

Theorem A. The Cartan matrix \(\{ c_{ij} \} \) of \(\tilde{A} \) is dual symmetric, i.e. \(c_{ij} = c_{ji}^* \).

Our proof easily follows from the following elementary, but fundamental, fact.

Lemma. Let \(\{ \beta_1, \ldots, \beta_m \} \) be a basis of a complement to \(\text{Hom}_A(P_i/P_i J^{n-1}, P_j) \) in \(\text{Hom}_A(P_i/P_i J^n, P_j) \). Set

\[
E_i/P_i J^n = \bigcap_{r=1}^m \ker \beta_r, \quad E_j = \sum_{r=1}^m \text{Im} \beta_r.
\]

Received by the editors August 24, 1982.

1980 Mathematics Subject Classification. Primary 20C05, 16A26; Secondary 16A46.

\(^1\)This work was supported by the Science & Engineering Research Council, U. K. and written while the author was visiting the University of Oxford.

©1983 American Mathematical Society

0002-9939/82/0000-0973/$01.50

205
Then

\[m = \dim(\text{Hom}_A(S_j, P_i/E_i)) = \dim(\text{Hom}_A(E_j, S_i)). \]

Proof. The first equality follows from the fact that

\[m = \dim(\text{Hom}_A(S_j, P_i J^{n-1}/P_i J^n)). \]

Moreover, for any \(\beta = \sum \lambda_\beta P_\beta \), \(\beta(P_i) \) is of Loewy length \(n \). In particular, if \(\pi \) is the canonical homomorphism \(E_j \rightarrow E_j/E_j J \), then \(\pi \beta_1, \ldots, \pi \beta_m \) are linearly independent, i.e. \(E_j/E_j J \cong (S_j)^m \), which is equivalent to the second equality.

Remark. It immediately follows from this observation that the Cartan matrix of \(A \) is symmetric. Indeed, if we denote the dimension above by \(m_n \), we see that

\[c_{ij} = \sum m_n = c_{ji}, \]

where the first equality follows by considering the Loewy series of \(P_i \), the second by considering the socle series of \(P_j \).

Theorem B. The multiplicity of \(S_j \) in \(P_i J^{n-1}/P_i J^n \) equals that of \(S_j \) in \(P_j J^{n-1}/P_j J^n \) for any \(n \).

Proof. Using duality, it suffices to prove that the first number, \(m_1 \), is less than or equal to the second, \(m_2 \). By the Lemma,

\[m_1 = \dim(\text{Hom}_A(S_j, P_i/P_i J^n)) = \dim(\text{Hom}_A(B, S_i)), \]

where \(B \) is a submodule of \(P_j \) of the form \(B = \sum_{r=1}^m B_r \), and each \(B_r \) is a homomorphic image of \(P_i \) in \(P_j \) of Loewy length exactly \(n \). But this implies that \(B^* \) is a quotient module of \(P_j \), with \(B^* J^{n-1} = (S_j)^m \).

Now, in general, if \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) is exact, we obtain

\[L + MJ^{n-1}/L + MJ^n \cong (L + MJ^{n-1}/L)/(L + MJ^n/L) \cong NJ^{n-1}/NJ^n. \]

Choosing \(M = P_j \) and \(N = B^* \), we consequently obtain that, indeed, \(m_1 \leq m_2 \).

Proof of Theorem A. We denote the Cartan matrix of \(A/J^n \) by \((c_{ij}(n)) \) and use induction on \(n \). Thus it suffices to prove that

\[c_{ij}(n) - c_{ij}(n-1) = c_{ji^*}(n) - c_{ji^*}(n-1), \]

which is exactly the statement of Theorem B.

This result has several applications, of which we just mention one:

Corollary. Let \(P_{i_1}, \ldots, P_{i_k} \) be the projective modules of a self-dual block of \(F[G] \). Assume that \(P_{i_1} \) is self-dual and the Loewy series of \(P_{i_2}, \ldots, P_{i_k} \) are known. Then the Loewy series of \(P_{i_1} \) is known as well, except for the composition factors isomorphic to \(S_{i_1} \).

References

Mathematics Institute, Aarhus University, Aarhus, Denmark

Mathematical Institute, Oxford, England

Current address. School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540