On relative normal complements in finite groups. II
HTML articles powered by AMS MathViewer
- by Henry S. Leonard PDF
- Proc. Amer. Math. Soc. 88 (1983), 212-214 Request permission
Abstract:
Given a finite group $G$ and subgroups $H$ and ${H_0}$ with ${H_0} \triangleleft H$, we let $\pi$ denote the set of prime divisors of $(H:{H_0})$, and we denote this configuration by $(G,H,{H_0},\pi )$. Pamela Ferguson has shown that if $H/{H_0}$ is solvable, then under certain conditions there exists a unique relative normal complement ${G_0}$ of $H$ over ${H_0}$. In this paper we give alternative proofs of her two theorems.References
- Pamela A. Ferguson, Relative normal complements in finite groups, Proc. Amer. Math. Soc. 87 (1983), no. 1, 38–40. MR 677226, DOI 10.1090/S0002-9939-1983-0677226-5
- Henry S. Leonard Jr., On relative normal complements in finite groups, Arch. Math. (Basel) 40 (1983), no. 2, 97–108. MR 720899, DOI 10.1007/BF01192757
- William F. Reynolds, Isometries and principal blocks of group characters, Math. Z. 107 (1968), 264–270. MR 236280, DOI 10.1007/BF01110015
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 212-214
- MSC: Primary 20D40
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695243-6
- MathSciNet review: 695243