On tensor products and extended centroids
HTML articles powered by AMS MathViewer
- by W. K. Nicholson and J. F. Watters PDF
- Proc. Amer. Math. Soc. 88 (1983), 215-217 Request permission
Abstract:
For prime algebras $R$ and $S$ over a field $F$ it is shown that each nonzero ideal of $R \otimes S$ contains a nonzero element $r \otimes s$, $r \in R$, $s \in S$, if and only if $C(R) \otimes C(S)$ is a field, where $C(R)$ (respectively $C(S)$) is the extended centroid of $R$ (respectively $S$).References
- S. A. Amitsur, On rings of quotients, Symposia Mathematica, Vol. VIII (Convegno sulleAlgebre Associative, INDAM, Rome, 1970) Academic Press, London, 1972, pp. 149–164. MR 0332855
- Theodore S. Erickson, Wallace S. Martindale 3rd, and J. Marshall Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49–63. MR 382379
- J. Krempa, On semisimplicity of tensor products, Ring theory (Proc. Antwerp Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978) Lecture Notes in Pure and Appl. Math., vol. 51, Dekker, New York, 1979, pp. 105–122. MR 563289
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- J. Matczuk, Central closure of semiprime tensor products, Comm. Algebra 10 (1982), no. 3, 263–278. MR 651603, DOI 10.1080/00927878208822715
- Richard Resco, A reduction theorem for the primitivity of tensor products, Math. Z. 170 (1980), no. 1, 65–76. MR 558888, DOI 10.1007/BF01214712
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 215-217
- MSC: Primary 16A12; Secondary 16A20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695244-8
- MathSciNet review: 695244