Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The structure of the automorphism group of a free group on two generators
HTML articles powered by AMS MathViewer

by Dragomir Ž. Đoković PDF
Proc. Amer. Math. Soc. 88 (1983), 218-220 Request permission

Abstract:

Let ${F_2} = Z * Z$ be a free group of rank two. We show that ${\operatorname {Aut} F_2}$ can be built up from cyclic groups by using only the free products and semidirect products. Explicitly we have $\operatorname {Aut} {F_2} = ((Z * Z) \rtimes ({Z_3} * {Z_3})) \rtimes ({Z_4} \rtimes {Z_2})$. As a corollary we obtain a simple presentation of $\operatorname {Aut} {F_2}$.
References
  • H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14, Springer-Verlag, New York-Heidelberg, 1972. MR 0349820, DOI 10.1007/978-3-662-21946-1
  • Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
  • W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966. B. H. Neumann, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1932), 367-386.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E05, 20F28
  • Retrieve articles in all journals with MSC: 20E05, 20F28
Additional Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 88 (1983), 218-220
  • MSC: Primary 20E05; Secondary 20F28
  • DOI: https://doi.org/10.1090/S0002-9939-1983-0695245-X
  • MathSciNet review: 695245