Some inequalities of algebraic polynomials having all zeros inside $[-1, 1]$
HTML articles powered by AMS MathViewer
- by A. K. Varma
- Proc. Amer. Math. Soc. 88 (1983), 227-233
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695248-5
- PDF | Request permission
Abstract:
Let ${H_n}$ be the set of all algebraic polynomials whose degree is $n$ and whose zero are all real and lie inside $[ - 1,1]$. Then for $n$ even we have $(n = 2m)$ \[ \int _{ - 1}^1 {{{({P_n}(x))}^2} \geqslant (n/2 + 3/4 + 3/4(n - 1))\int _{ - 1}^1 {P_n^2(x)dx} } ,\] where equality holds iff ${P_n}(x) = {(1 - {x^2})^m}$. If $n$ is an odd positive integer, a similar inequality is valid (see (1.6) below). In the case ${P_n} \in {H_n}$ and subject to the condition ${P_n}(1) = 1$, then \[ \int _{ - 1}^1 {({{P’}_n}} (x){)^2}dx \geqslant \frac {n}{4} + \frac {1}{8} + \frac {1}{{8(2n - 1)}},\], where equality holds for ${P_n}(x) = {((1 + x)/2)^n}$.References
- J. Eröd, Bizonyos polinomok maximumar ial, Mat. Fiz. Lapok 46 (1939), 58.
J. Szabadös and A. K. Varma, Approximation theory. III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 881-888.
- P. Turan, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89–95 (German). MR 228
- A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,+{}1]$. II, Proc. Amer. Math. Soc. 69 (1978), no. 1, 25–33. MR 473124, DOI 10.1090/S0002-9939-1978-0473124-9
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 227-233
- MSC: Primary 41A17; Secondary 26C05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695248-5
- MathSciNet review: 695248