Interpolation between $H^{1}$ and $L^{\infty }$
HTML articles powered by AMS MathViewer
- by Barbara D. MacCluer PDF
- Proc. Amer. Math. Soc. 88 (1983), 234-236 Request permission
Abstract:
The intermediate spaces in the Lions-Peetre method of interpolation between ${H^1}$ and ${L^\infty }$ were identified by N. Rivière and Y. Sagher as Lorentz $L(p,q)$ spaces. In this article we present a simplification of their proof of this result.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Colin Bennett and Robert Sharpley, Interpolation between $H^{1}$ and $L^{\infty }$, Functional analysis and approximation (Oberwolfach, 1980) Internat. Ser. Numer. Math., vol. 60, Birkhäuser, Basel-Boston, Mass., 1981, pp. 111–116. MR 650268
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- N. M. Rivière and Y. Sagher, Interpolation between $L^{\infty }$ and $H^{1}$, the real method, J. Functional Analysis 14 (1973), 401–409. MR 0361759, DOI 10.1016/0022-1236(73)90053-0
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 234-236
- MSC: Primary 46E30; Secondary 42B30, 46M35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695249-7
- MathSciNet review: 695249