Disappearance of extreme points
HTML articles powered by AMS MathViewer
- by Peter Morris PDF
- Proc. Amer. Math. Soc. 88 (1983), 244-246 Request permission
Abstract:
It is shown that every separable Banach space which contains an isomorphic copy of ${c_0}$ is isomorphic to a strictly convex space $E$ such that no point of $E$ is an extreme point of the unit ball of ${E^{ * * }}$.References
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- R. R. Phelps, Extreme points of polar convex sets, Proc. Amer. Math. Soc. 12 (1961), 291–296. MR 121634, DOI 10.1090/S0002-9939-1961-0121634-3
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 244-246
- MSC: Primary 46B20; Secondary 46B22
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695251-5
- MathSciNet review: 695251