Tensor products of preclosed operators on $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Liang Sen Wu
- Proc. Amer. Math. Soc. 88 (1983), 265-269
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695256-4
- PDF | Request permission
Abstract:
In this paper, we prove the following result: If ${A_1}$, ${A_2}$ are ${C^ * }$-algebras, and ${T_1}$, ${T_2}$ are preclosed operators on ${A_1}$, ${A_2}$ respectively, then ${T_1} \otimes {T_2}$ is preclosed on ${A_1}{ \otimes _{\min }}{A_2}$. Furthermore, we show that the injective ${C^ * }$-cross norm $|| \cdot |{|_{\min }}$ is reflexive on the algebraic tensor product ${A_1} \otimes {A_2}$.References
- F. F. Bonsall, A minimal property of the norm in some Banach algebras, J. London Math. Soc. 29 (1954), 156–164. MR 61283, DOI 10.1112/jlms/s1-29.2.156
- Takateru Okayasu, On the tensor products of $C^{\ast }$-algebras, Tohoku Math. J. (2) 18 (1966), 325–331. MR 203508, DOI 10.2748/tmj/1178243423
- Takateru Okayasu, Some cross norms which are not uniformly cross, Proc. Japan Acad. 46 (1970), 54–57. MR 264414
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
- Robert Schatten, On reflexive norms for the direct product of Banach spaces, Trans. Amer. Math. Soc. 54 (1943), 498–506. MR 9086, DOI 10.1090/S0002-9947-1943-0009086-9
- Masamichi Takesaki, On the cross-norm of the direct product of $C^{\ast }$-algebras, Tohoku Math. J. (2) 16 (1964), 111–122. MR 165384, DOI 10.2748/tmj/1178243737
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
- Takasi Turumaru, On the direct-product of operator algebras. I, Tohoku Math. J. (2) 4 (1952), 242–251. MR 54859, DOI 10.2748/tmj/1178245371
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 265-269
- MSC: Primary 46L05; Secondary 46M05, 47C15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695256-4
- MathSciNet review: 695256