TENSOR PRODUCTS OF PRECLOSED OPERATORS
ON C*-ALGEBRAS

LIANG-SEN WU

Abstract. In this paper, we prove the following result: If A_1, A_2 are C*-algebras, and T_1, T_2 are preclosed operators on A_1, A_2 respectively, then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes \min A_2$. Furthermore, we show that the injective C*-cross norm $\| \cdot \|_{\min}$ is reflexive on the algebraic tensor product $A_1 \otimes A_2$.

Since Turumaru [8] introduced tensor products of C*-algebras, mysterious properties of C*-cross norms received much attention from many specialists. For example, Takesaki [6] found out that the C*-norm on the algebraic tensor product is not unique. Furthermore, Okayasu [3] showed that the minimal C*-norm is not a uniform cross norm. Therefore, it is natural to ask the question: when σ and τ are bounded operators on C*-algebras A_1 and A_2, is $\sigma \otimes \tau$ bounded on $A_1 \otimes \min A_2$? The answer is negative. In 1970, Okayasu [3] gave an example of σ, τ and C*-algebras A_1, A_2 in such a way that $\sigma \otimes \tau$ is unbounded on $A_1 \otimes \min A_2$. Naturally, we will ask the question: what can we say about $\sigma \otimes \tau$ when σ and τ are bounded? What kind of properties of the operators σ and τ are preserved under the tensor product operation?

The purpose of this paper is to answer these questions. (1) If σ and τ are bounded, then $\sigma \otimes \tau$ is preclosed on $A_1 \otimes \min A_2$. (2) If σ and τ are densely defined and preclosed, then $\sigma \otimes \tau$ is densely defined and preclosed on $A_1 \otimes \min A_2$.

In Theorem 3, we show that the minimal C*-cross norm is reflexive.

Lemma 1. Let E be a Banach space and T be a densely defined linear operator on E. Then the following statements are equivalent.

1. T is preclosed.
2. T has a minimal closed linear extension; i.e., there exists a closed linear extension \bar{T} of T such that any closed linear extension of T is a closed linear extension of \bar{T}.
3. For any $y \neq 0$ in E, $(0, y)$ is not in the closure of the graph of T.
4. $\mathcal{D}(T^*)$ is total in E^*.
5. $\mathcal{D}(T^*)$ is $\sigma(E^*, E)$-dense in E^*.

(T^* is the conjugate operator of T; E^* is the conjugate space of E.)

Since we can find the proof of Lemma 1 in general Banach space text books, we omit it.
Lemma 2. Let A_1, A_2 be C^*-algebras and A_1^* and A_2^* be the conjugate spaces of A_1, A_2, respectively. Then the algebraic tensor product

$$F = A_1^* \otimes A_2^*$$

is $\sigma((A_1 \otimes_{\min} A_2)^*, A_1 \otimes_{\min} A_2)$-dense in $(A_1 \otimes_{\min} A_2)^*$.

Proof. From p. 208 in [7], if $f_1 \in A_1^*$, $f_2 \in A_2^*$ and $x = \sum_{i=1}^n x_{1,i} \otimes x_{2,i} \in A_1 \otimes A_2$, then

$$|\langle x, f_1 \otimes f_2 \rangle| \leq \|x\|_{\min} \|f_1\| \|f_2\|.$$

Thus, we have $A_1^* \otimes A_2^* \subseteq (A_1 \otimes_{\min} A_2)^*$.

To be $\sigma((A_1 \otimes_{\min} A_2)^*, A_1 \otimes_{\min} A_2)$-dense in $(A_1 \otimes_{\min} A_2)^*$ is equivalent to being total in $(A_1 \otimes_{\min} A_2)^*$ so we have to prove that F is total in $(A_1 \otimes_{\min} A_2)^*$.

Suppose $x \in A_1 \otimes_{\min} A_2$ and $\langle x, f \rangle = 0$, $\forall f \in F$. We shall show $x = 0$.

Let $\sigma(A_1)$ and $\sigma(A_2)$ be the state spaces of A_1 and A_2, respectively, $\omega_1 \in \sigma(A_1)$ and $\omega_2 \in \sigma(A_2)$.

Let Π_{ω_1} and Π_{ω_2} be the cyclic representations corresponding to ω_1 and ω_2 with representation Hilbert spaces \mathcal{G}_{ω_1} and \mathcal{G}_{ω_2} respectively. We construct the tensor representation of Π_{ω_1} and Π_{ω_2},

$$\Pi_{\omega} = \Pi_{\omega_1} \otimes \Pi_{\omega_2}.$$

Therefore, for all $\xi_1, \eta_1 \in \mathcal{G}_{\omega_1}$ and $\xi_2, \eta_2 \in \mathcal{G}_{\omega_2}$,

$$(\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) | \eta_1 \otimes \eta_2) = \langle x, f \otimes g \rangle = 0,$$

in which $\langle x_1, f \rangle = (\Pi_{\omega_1}(x_1) \xi_1 | \eta_1)$ and $\langle x_2, g \rangle = (\Pi_{\omega_2}(x_2) \xi_2 | \eta_2)$. Then

$$\left(\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) | \sum_{j=1}^m \eta_{1,j} \otimes \eta_{2,j}\right) = 0.$$

Hence $\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) \perp \mathcal{G}_{\omega_1} \otimes \mathcal{G}_{\omega_2}$.

Since $\mathcal{G}_{\omega_1} \otimes \mathcal{G}_{\omega_2}$ is dense in \mathcal{G}_{ω}, $\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) = 0$; also

$$\Pi_{\omega}(x) \left(\sum_{i=1}^n \xi_{1,i} \otimes \xi_{2,i}\right) = 0, \quad \Pi_{\omega}(x) = 0.$$

This implies

$$\|x\|_{\min} = \text{Sup} \left\{\|\Pi_{\omega}(x)\|: \omega = \omega_1 \otimes \omega_2, \omega_1 \in \sigma(A_1), \omega_2 \in \sigma(A_2)\right\} = 0.$$

Thus we have $x = 0$. Q.E.D.

Theorem 1. Let A_1 and A_2 be C^*-algebras and T_1 and T_2 be densely defined preclosed operators on A_1 and A_2. Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$.

Proof. From Lemma 1, as T_1 and T_2 are densely defined preclosed operators on A_1 and A_2, it follows that $\mathcal{D}(T_1^*)$ is $\sigma(A_1^*, A_1)$-dense in A_1^* and $\mathcal{D}(T_2^*)$ is $\sigma(A_2^*, A_2)$-dense in A_2^*.

It is easy to verify $\mathcal{D}(T_1^*) \otimes \mathcal{D}(T_2^*)$ is $\sigma((A_1 \otimes_{\min} A_2)^*, (A_1 \otimes_{\min} A))$-dense in $A_1^* \otimes A_2^*$.
By Lemma 2, we can conclude

$$\mathcal{V}(T^*_1) \otimes \mathcal{V}(T^*_2)$$

is a((A_1 \otimes \min A_2)^* \cdot (A_1 \otimes \min A_2))-dense in (A_1 \otimes \min A_2)^*.

Since

$$\mathcal{V}(T^*_1) \otimes \mathcal{V}(T^*_2) \subseteq \mathcal{V}((T_1 \otimes T_2)^*),$$

$$\mathcal{V}((T_1 \otimes T_2)^*)$$

is a((A_1 \otimes \min A_2)^* \cdot (A_1 \otimes \min A_2))-dense in (A_1 \otimes \min A_2)^*. By Lemma 1, $T_1 \otimes T_2$ is preclosed in (A_1 \otimes \min A_2). Q.E.D.

Corollary 1. Let T_1, T_2 be bounded operators on A_1 and A_2, respectively. Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes \min A_2$.

Now we turn to studying tensor products of Banach spaces. We will use the notations in [7].

We assume that E_1 and E_2 denote any two Banach spaces while E_1^* and E_2^* stand for their conjugate spaces. $E_1 \otimes E_2$ and $E_1^* \otimes E_2^*$ denote algebraic tensor products of E_1, E_2 and E_1^*, E_2^* respectively.

If β is a norm in $E_1 \otimes E_2$, then β induces naturally a norm on $E_1^* \otimes E_2^*$:

$$\| f \|_{\beta^*} = \sup \{ |\langle x, f \rangle| : x \in E_1 \otimes E_2, \| x \|_{\beta} \leq 1 \},$$

where $\langle x, f \rangle$ means, of course, the value

$$\langle x, f \rangle = \sum_{j=1}^{m} \sum_{i=1}^{n} \langle x_{1,j}, f_{1,i} \rangle \langle x_{2,j}, f_{2,i} \rangle,$$

for each $x = \sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \in E_1 \otimes E_2$.

In the same way, we can define β^{**}.

If $\beta^{**} = \beta$ on $E_1 \otimes E_2$, we call β reflexive.

The completion of $E_1 \otimes E_2$ and $E_1^* \otimes E_2^*$ under β and β^* are denoted by $E_1 \otimes_{H} E_2$ and $E_1^* \otimes_{H} E_2^*$.

We suppose λ is the least norm on $E_1 \otimes E_2$ [7].

Theorem 2. If β is a reflexive norm on $E_1 \otimes E_2$, $\beta \geq \lambda$ and T_1, T_2 are densely defined preclosed operators on E_1 and E_2 respectively, then $T_1 \otimes T_2$ is preclosed on $E_1 \otimes_{H} E_2$.

Proof. As T_1 and T_2 are preclosed, by Lemma 1, $\mathcal{V}(T^*_1)$ is $\sigma(E_1^*, E_1)$-dense in E_1^* and $\mathcal{V}(T^*_2)$ is $\sigma(E_2^*, E_2)$-dense in E_2^* respectively.

Now we prove $E_1^* \otimes_{H} E_2^*$ is $\sigma((E_1 \otimes_{H} E_2)^*, (E_1 \otimes_{H} E_2))^*$-dense in $(E_1 \otimes_{H} E_2)^*$.

Equivalently, we have to prove $E_1^* \otimes_{H} E_2^*$ is total in $(E_1 \otimes_{H} E_2)^*$. Since $\beta \geq \lambda$, from [4] $E_1^* \otimes E_2^* \subseteq (E_1 \otimes_{H} E_2)^*$ and $E_1^* \otimes_{H} E_2^* \subseteq (E_1 \otimes_{H} E_2)^*$. As β is reflexive, by Lemma 4.1 of [5], $(E_1 \otimes_{H} E_2) \subseteq (E_1^* \otimes_{H} E_2^*)$.

Let x be an element in $E_1 \otimes_{H} E_2$ such that $f(x) = 0$ for all $f \in E_1^* \otimes_{H} E_2^*$. By continuity of β^* and definition, $\beta^{**}(x)$ is the least positive number for which $|f(x)| \leq C\beta^*(f)$, for all $f \in E_1^* \otimes_{H} E_2^*$.

Therefore, $\beta^{**}(x) = 0$.

According to assumption, $\beta(x) = \beta^{**}(x) = 0$ and $x = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Hence, $E_1^* \otimes E_2^*$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, (E_1 \otimes_{\beta} E_2))$-dense in $(E_1 \otimes_{\beta} E_2)^*$. Therefore, $\mathcal{D}(T_1^*) \otimes \mathcal{D}(T_2^*)$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, E_1 \otimes_{\beta} E_2)$-dense in $(E_1 \otimes_{\beta} E_2)^*$.

Since

$$\mathcal{D}(T_1^*) \otimes \mathcal{D}(T_2^*) \subseteq \mathcal{D}((T_1 \otimes T_2)^*),$$

$\mathcal{D}((T_1 \otimes T_2)^*)$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, (E_1 \otimes_{\beta} E_2))$-dense in $(E_1 \otimes_{\beta} E_2)^*$.

By Lemma 1, $T_1 \otimes T_2$ is preclosed. Q.E.D.

Now we prove that the injective C^*-cross norm is reflexive. Using this property, we can give another proof of Theorem 1.

Theorem 3. If A_1 and A_2 are C^*-algebras, the injective C^*-cross norm on the algebraic tensor product $A_1 \otimes A_2$ is reflexive.

Proof. Let

$$A = A_1 \otimes A_2, \quad V = A_1^* \otimes A_2^*.$$

S_{a^*}, S_a denote the unit ball of V, A respectively, that is,

$$S_{a^*} = \{\omega : \|\omega\|_{a^*} \leq 1, \omega \in V\},$$
$$S_a = \{a : \|a\|_a \leq 1, a \in A\}.$$

We further set

$$\langle x, a\omega \rangle = \langle ax, \omega \rangle, \quad \langle x, a\omega \rangle = \langle xa, \omega \rangle.$$

Since $\|a\omega\|_{a^*} \leq \|a\|_a \|\omega\|_{a^*}$ for $a \in A_1 \otimes A_2$ and $\omega \in V$, V is invariant under A.

That is, if $\omega \in V$, then $a\omega \in V$, $a\omega \in V$ for all $a \in A$.

For $a \in A$, we define $\|a\|_a = \text{Sup}\{\|a\omega\|_{a^*} : \omega \in V, \|\omega\|_{a^*} \leq 1\}$.

It is easy to verify

$$\|a + b\|_a \leq \|a\|_a + \|b\|_a, \quad \|ab\|_a \leq \|a\|_a \|b\|_a, \quad \|\lambda a\|_a = |\lambda| \|a\|_a, \quad \|a\|_a \leq \|a\|_{a^*} \text{ for } a, b \in A.$$

According to the minimal property of the norm [1], we have

$$\|a\|_a = \|a\|_{a^*}.$$

$$\|a\|_a = \text{Sup}\{\|a\omega\|_{a^*} : \omega \in S_{a^*}\}$$
$$= \text{Sup}\{\|b, a\omega\| : b \in S_a, \omega \in S_{a^*}\}$$
$$= \text{Sup}\{\|ba, \omega\| : b \in S_a, \omega \in S_{a^*}\}$$
$$= \text{Sup}\{\|a, \omega b\| : b \in S_a, \omega \in S_{a^*}\}$$
$$\leq \text{Sup}\{\|a, \omega\| : \omega \in S_{a^*}\} \leq \|a\|_{a^*}.$$

Therefore, $\|a\|_a = \|a\|_{a^*}$. Q.E.D.

Corollary 2. Let A_1 and A_2 be C^*-algebras and T_1 and T_2 be densely defined preclosed operators on A_1 and A_2. Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$.

Proof. Since $\|\cdot\|_{\min}$ is reflexive and $\lambda \leq \|\cdot\|_{\min}$, by Theorem 2, $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$. Q.E.D.

In fact, Corollary 2 gives another proof of Theorem 1.
I would like to express my sincere gratitude to Professor M. Takesaki for his encouragement and several very useful discussions.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China