On the extension of $H^{p}$-functions in polydiscs
HTML articles powered by AMS MathViewer
- by P. S. Chee PDF
- Proc. Amer. Math. Soc. 88 (1983), 270-274 Request permission
Abstract:
For $N = 2\;{\text {or}}\;3$ it is shown that if $E$ is the zero set of a holomorphic function in ${U^N}$ satisfying the separation condition of Alexander [1], viz., there exist $r \in (0,1)$ and $\delta > 0$ such that $\left | {\alpha - \beta } \right | \geqslant \delta$ whenever $(zā,\alpha ,z'') \ne (zā,\beta ,z'')$ are both in $({Q^{k - 1}} \times U \times {Q^{N - k}}) \cap E$, where $Q = \{ \lambda \in {\mathbf {C}}:r < \left | \lambda \right | < 1\}$, then (a) $E$ is the zero set of some $F \in {H^\infty }({U^N})$, and (b) $0 < p \leqslant \infty$, every $g \in H(E)$ such that ${\left | g \right |^p}$ has a pluriharmonic majorant on $E$ extends to a $G \in {H^p}({U^N})$. This generalizes earlier results of the author [3] and Zarantonello [9].References
- Herbert Alexander, Extending bounded holomorphic functions from certain subvarieties of a polydisc, Pacific J. Math. 29 (1969), 485ā490. MR 244508, DOI 10.2140/pjm.1969.29.485
- Aldo Andreotti and Wilhelm Stoll, The extension of bounded holomorphic functions from hypersurfaces in a polycylinder, Rice Univ. Stud. 56 (1971), no.Ā 2, 199ā222 (1971). MR 277752
- P. S. Chee, Zero sets and extensions of bounded holomorphic functions in polydiscs, Proc. Amer. Math. Soc. 60 (1976), 109ā115 (1977). MR 422678, DOI 10.1090/S0002-9939-1976-0422678-5
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Yum-tong Siu, Sheaf cohomology with bounds and bounded holomorphic functions, Proc. Amer. Math. Soc. 21 (1969), 226ā229. MR 237827, DOI 10.1090/S0002-9939-1969-0237827-8
- E. L. Stout, The second Cousin problem with bounded data, Pacific J. Math. 26 (1968), 379ā387. MR 235155, DOI 10.2140/pjm.1968.26.379
- Sergio E. Zarantonello, The multiplicative Cousin problem and a zero set for the Nevanlinna class in the polydisc, Trans. Amer. Math. Soc. 200 (1974), 291ā313. MR 355092, DOI 10.1090/S0002-9947-1974-0355092-4
- Sergio E. Zarantonello, The extension of $H^{p}$-functions from certain hypersurfaces of a polydisc, Proc. Amer. Math. Soc. 78 (1980), no.Ā 4, 519ā524. MR 556624, DOI 10.1090/S0002-9939-1980-0556624-1
- Sergio E. Zarantonello, The sheaf of $H^{p}$-functions in product domains, Pacific J. Math. 93 (1981), no.Ā 2, 479ā493. MR 623579, DOI 10.2140/pjm.1981.93.479
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 270-274
- MSC: Primary 32A35; Secondary 32D15, 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695257-6
- MathSciNet review: 695257