Coefficients and integral means of some classes of analytic functions
HTML articles powered by AMS MathViewer
- by T. Sheil-Small PDF
- Proc. Amer. Math. Soc. 88 (1983), 275-282 Request permission
Abstract:
The sharp coefficient bounds for the classes ${V_k}$ of functions of bounded boundary rotation are obtained by a short and elementary argument. Elementary methods are also applied for the coefficients of related classes characterised by a generalised Kaplan condition. The result ${(1 + xz)^\alpha }{(1 - z)^{ - \beta }} \ll {(1 + z)^\alpha }{(1 - z)^{ - \beta }}$ $(\left | x \right | = 1,\alpha \geqslant 1,\beta \geqslant 1)$ is proved simply. It is further shown that the functions ${(1 + z)^\alpha }{(1 - z)^{ - \beta }}$ are extremal for the $p$th means ($p$ an arbitrary real) of all Kaplan classes $K(\alpha ,\beta )$.References
- D. Aharonov and S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 524 (1972), 14. MR 322155
- Albert Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169. MR 417406, DOI 10.1007/BF02392144
- D. A. Brannan, On coefficient problems for certain power series, Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973) London Math. Soc. Lecture Note Ser., No. 12, Cambridge Univ. Press, London, 1974, pp. 17–27. MR 0412411
- D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 523 (1973), 18. MR 338343
- J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215–216. MR 107009, DOI 10.1112/jlms/s1-34.2.215
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Y. J. Leung, Integral means of the derivatives of some univalent functions, Bull. London Math. Soc. 11 (1979), no. 3, 289–294. MR 554395, DOI 10.1112/blms/11.3.289
- Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221–235. MR 150279
- Stephan Ruscheweyh, Some convexity and convolution theorems for analytic functions, Math. Ann. 238 (1978), no. 3, 217–228. MR 514429, DOI 10.1007/BF01420249
- T. Sheil-Small, The Hadamard product and linear transformations of classes of analytic functions, J. Analyse Math. 34 (1978), 204–239 (1979). MR 531276, DOI 10.1007/BF02790013
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 275-282
- MSC: Primary 30C45; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695258-8
- MathSciNet review: 695258