Analytic generators and the KMS condition
HTML articles powered by AMS MathViewer
- by Jean De Cannière PDF
- Proc. Amer. Math. Soc. 88 (1983), 287-292 Request permission
Abstract:
The KMS condition at arbitrary $\beta$ for a state $\omega$ of a ${C^ * }$-dynamical system $(A,{\mathbf {R}},\alpha )$ is stated in terms of the analytic continuation of the correlation functions $t \mapsto \omega ({x^ * }{\alpha _t}(x))(x \in A){\text {in}} - i({\text {or}} + i)$. The precise formulation involves the analytic generator of $\alpha$ (or its inverse).References
- Huzihiro Araki, On KMS states of a $C^{\ast }$ dynamical system, $\textrm {C}^{\ast }$-algebras and applications to physics (Proc. Second Japan-USA Sem., Los Angeles, Calif., 1977) Lecture Notes in Math., vol. 650, Springer, Berlin, 1978, pp. 66–84. MR 504753
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics. MR 611508, DOI 10.1007/978-3-662-09089-3
- Ioana Ciorănescu and László Zsidó, Analytic generators for one-parameter groups, Tohoku Math. J. (2) 28 (1976), no. 3, 327–362. MR 430867, DOI 10.2748/tmj/1178240775
- J. De Cannière, A spectral characterization of KMS states, Comm. Math. Phys. 84 (1982), no. 2, 187–206. MR 661132, DOI 10.1007/BF01208567
- M. Fannes and A. Verbeure, Correlation inequalities and equilibrium states. II, Comm. Math. Phys. 57 (1977), no. 2, 165–171. MR 496233, DOI 10.1007/BF01625775
- R. Haag, N. M. Hugenholtz, and M. Winnink, On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), 215–236. MR 219283, DOI 10.1007/BF01646342
- J. Naudts and A. Verbeure, Bounds on the admittance for KMS states, J. Mathematical Phys. 17 (1976), no. 3, 419–423. MR 416395, DOI 10.1063/1.522909
- G. Roepstorff, Correlation inequalities in quantum statistical mechanics and their application in the Kondo problem, Comm. Math. Phys. 46 (1976), no. 3, 253–262. MR 424122, DOI 10.1007/BF01609122
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Geoffrey L. Sewell, $\textrm {KMS}$ conditions and local thermodynamical stability of quantum lattice systems. II, Comm. Math. Phys. 55 (1977), no. 1, 53–61. MR 462398, DOI 10.1007/BF01613149
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 287-292
- MSC: Primary 46L40; Secondary 30C80, 82A15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695260-6
- MathSciNet review: 695260