On generalized Fuglede-Putnam theorems of Hilbert-Schmidt type
HTML articles powered by AMS MathViewer
- by Fuad Kittaneh PDF
- Proc. Amer. Math. Soc. 88 (1983), 293-298 Request permission
Abstract:
We prove the following statements about the bounded linear operators on a separable, complex Hilbert space: (1) If $A$ and ${B^ * }$ are subnormal operators, and $X$ is an invertible operator such that $AX - XB \in {C_2}$, then there exists a unitary operator $U$ such that $AU - UB \in {C_2}$. Moreover, ${A^ * }A - A{A^ * }$ and ${B^ * }B - B{B^ * }$ are in ${C_1}$. (2) If $A$ is a subnormal operator with ${A^ * }A - A{A^ * } \in {C_1}$, then for any operator $X$, $AX - XA \in {C_2}$ implies ${A^ * }X - X{A^ * } \in {C_2}$. (3) If $A$ is a hyponormal contraction with $1 - A{A^ * } \in {C_1}$, then for any operator $X$, $AX - XA \in {C_2}$ implies ${A^ * }X - X{A^ * } \in {C_2}$. (4) For every operator $T$ for which ${T^2}$ is normal and ${T^ * }T - T{T^ * } \in {C_1}$, $TX - XT \in {C_2}$ implies ${T^ * }X - X{T^ * } \in {C_2}$ for any operator $X$. Applications of a recent result of Moore, Rogers and Trent [8] are also given.References
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- C. A. Berger and B. I. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193–1199, (1974). MR 374972, DOI 10.1090/S0002-9904-1973-13375-0
- Takayuki Furuta, On relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc. 77 (1979), no. 3, 324–328. MR 545590, DOI 10.1090/S0002-9939-1979-0545590-2
- Takayuki Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (1981), no. 2, 240–242. MR 593465, DOI 10.1090/S0002-9939-1981-0593465-4
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368 N. Ivanovski, Subnormality of operator valued weighted shifts, Ph. D. Thesis, Indiana Univ., 1973. R. Kulkarni, Subnormal operators and weighted shifts, Ph. D. Thesis, Indiana Univ., 1970.
- R. L. Moore, D. D. Rogers, and T. T. Trent, A note on intertwining $M$-hyponormal operators, Proc. Amer. Math. Soc. 83 (1981), no. 3, 514–516. MR 627681, DOI 10.1090/S0002-9939-1981-0627681-X
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618
- Heydar Radjavi and Peter Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653–664. MR 278097, DOI 10.1016/0022-247X(71)90105-3
- Joseph G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453–1458. MR 149282
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I, Trans. Amer. Math. Soc. 246 (1978), 193–209. MR 515536, DOI 10.1090/S0002-9947-1978-0515536-5
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
- Gary Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. Math. Soc. 83 (1981), no. 1, 113–118. MR 619994, DOI 10.1090/S0002-9939-1981-0619994-2
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 293-298
- MSC: Primary 47B20; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695261-8
- MathSciNet review: 695261