Zero-free parabolic regions for polynomials with complex coefficients
HTML articles powered by AMS MathViewer
- by Hans-J. Runckel PDF
- Proc. Amer. Math. Soc. 88 (1983), 299-304 Request permission
Abstract:
Recent results by P. Henrici, E. B. Saff and R. S. Varga on zero-free parabolic regions for sequences of polynomials generated from three-term recurrence relations with real coefficients are generalized to complex coefficients by continued fraction methods. Especially, it is shown that all zeros of the generalized Bessel polynomials $Y_n^{(\delta )}$ for complex $\delta$ are contained in a cardioid region, which generalizes a result of E. B. Saff and R. S. Varga for real $\delta$.References
- M. G. de Bruin, E. B. Saff, and R. S. Varga, On the zeros of generalized Bessel polynomials. I, II, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 1–13, 14–25. MR 609463
- Emil Grosswald, Bessel polynomials, Lecture Notes in Mathematics, vol. 698, Springer, Berlin, 1978. MR 520397
- P. Henrici, Note on a theorem of Saff and Varga, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 157–161. MR 0467084 E. Leopold, Approximants de Padé pour les fonctions de classes $S$, et localisation des zeros de certains polynomes, Thèse de troisième cycle, Univ. de Provence, January 18, 1982.
- E. B. Saff and R. S. Varga, On the zeros and poles of Padé approximants to $e^{z}$, Numer. Math. 25 (1975/76), no. 1, 1–14. MR 399429, DOI 10.1007/BF01419524
- E. B. Saff and R. S. Varga, Zero-free parabolic regions for sequences of polynomials, SIAM J. Math. Anal. 7 (1976), no. 3, 344–357. MR 414968, DOI 10.1137/0507028
- E. B. Saff and R. S. Varga, On the sharpness of theorems concerning zero-free regions for certain sequences of polynomials, Numer. Math. 26 (1976), no. 4, 345–354. MR 447537, DOI 10.1007/BF01409957
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 299-304
- MSC: Primary 30C15; Secondary 30B70
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695262-X
- MathSciNet review: 695262