On the uniqueness question for Hahn-Banach extensions from the space of $\mathcal {L}^1$ analytic functions
HTML articles powered by AMS MathViewer
- by Edgar Reich
- Proc. Amer. Math. Soc. 88 (1983), 305-310
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695263-1
- PDF | Request permission
Abstract:
Let $\Omega$ be a region of the complex plane, $\mathcal {B}\left ( \Omega \right )$ the space of analytic ${\mathcal {L}^1}$ functions over $\Omega$, and $\kappa \in {\mathcal {L}^\infty }\left ( \Omega \right )$. An evident necessary condition for the linear functional ${\Lambda _\kappa }\left [ \varphi \right ] = \smallint {\smallint _\Omega }\kappa \varphi dxdy(\varphi \in \mathcal {B}(\Omega ))$ to have a unique Hahn-Banach extension from $\mathcal {B}(\Omega )$ to ${\mathcal {L}^1}(\Omega )$ is that $|| {{\Lambda _{\kappa |G}}} || = {|| {\kappa |G} ||_\infty }$ for every restriction $\kappa |G$ of $\kappa$ to a subregion $G$ of $\Omega$. An example is constructed to show that not even a considerably stronger condition is sufficient for uniqueness of the Hahn-Banach extension. Remarks on the problem of whether $\left | {\kappa (z)} \right |$ is necessarily constant a.e. if the Hahn-Banach extension is unique indicate that this question is still open, contrary to an assertion in the literature.References
- Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
- W. K. Hayman and Edgar Reich, On Teichmüller mappings of the disk, Complex Variables Theory Appl. 1 (1982/83), no. 1, 1–12. MR 674357, DOI 10.1080/17476938208814002
- Edgar Reich, Uniqueness of Hahn-Banach extensions from certain spaces of analytic functions, Math. Z. 167 (1979), no. 1, 81–89. MR 532887, DOI 10.1007/BF01215245
- Edgar Reich, A criterion for unique extremality of Teichmüller mappings, Indiana Univ. Math. J. 30 (1981), no. 3, 441–447. MR 611232, DOI 10.1512/iumj.1981.30.30035
- Edgar Reich, On criteria for unique extremality of Teichmüller mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 2, 289–301 (1982). MR 658931, DOI 10.5186/aasfm.1981.0617
- V. G. Šeretov, Locally extremal quasiconformal mappings, Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1338–1340 (Russian). MR 564341
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 305-310
- MSC: Primary 46E15; Secondary 30H05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695263-1
- MathSciNet review: 695263